Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmet Bakan is active.

Publication


Featured researches published by Ahmet Bakan.


Bioinformatics | 2011

ProDy: protein dynamics inferred from theory and experiments.

Ahmet Bakan; Lidio Meireles; Ivet Bahar

Summary: We developed a Python package, ProDy, for structure-based analysis of protein dynamics. ProDy allows for quantitative characterization of structural variations in heterogeneous datasets of structures experimentally resolved for a given biomolecular system, and for comparison of these variations with the theoretically predicted equilibrium dynamics. Datasets include structural ensembles for a given family or subfamily of proteins, their mutants and sequence homologues, in the presence/absence of their substrates, ligands or inhibitors. Numerous helper functions enable comparative analysis of experimental and theoretical data, and visualization of the principal changes in conformations that are accessible in different functional states. ProDy application programming interface (API) has been designed so that users can easily extend the software and implement new methods. Availability: ProDy is open source and freely available under GNU General Public License from http://www.csb.pitt.edu/ProDy/. Contact: [email protected]; [email protected]


Chemical Reviews | 2010

Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins

Ivet Bahar; Timothy R. Lezon; Ahmet Bakan; Indira H. Shrivastava

1.1. Protein Dynamics and Allostery 1.1.1. Dynamic Equilibrium between Pre-existing Conformations The ability of macromolecules to sample an ensemble of conformations has been evident for decades, starting from the statistical mechanical theory and simulations of polymers.1–3 A polymer chain of N atoms enjoys 3N – 6 internal degrees of freedom, which gives rise to infinitely many conformations. Even a simple model of N = 100 atoms where bond lengths and bond angles are fixed, and dihedral angles are restricted to discrete isomeric states—say three states per bond—has access to 3N–3 = 1.9 × 1046 conformations. Proteins, too, are polymers, and have access to ensembles of conformations. The main structural difference between proteins and other chain molecules is that, under physiological conditions, proteins sample a significantly narrower distribution of conformations compared to disordered polymers. Their conformational variations are confined to the neighborhood of a global energy minimum that defines their “native state”. While the native state has been traditionally viewed as a “unique structure” selected or encoded by the particular amino acid sequence, it is now established by theory, computations, and experiments, after the work of pioneering scientists in the field,4–15 that the native state actually represents an ensemble of microstates: these microstates maintain the overall “fold” and usually share common secondary structure, but they differ in their detailed atomic coordinates. Differences are manifested by variations in bond lengths, bond angles, dihedral angles, loop conformations, substructure packing, or even entire domain or subunit positions and orientations. Importantly, these microstates are not static: there is a dynamic equilibrium which allows for continual interconversions between them while maintaining their probability distribution. These “jigglings and wigglings of atoms” as expressed by Feynman,16 and clearly observed in molecular dynamics (MD) simulations, were originally viewed as random events, or stochastic properties, hardly relevant to biological function. They essentially account for local relaxation phenomena in the nanoseconds regime, which may facilitate, for example, the diffusion of oxygen into the heme cavity of myoglobin17 or the permeation of ions across selectivity filters in ion channels.18–20 However, recent studies indicate that these thermal fluctuations may not only passively facilitate but also actively drive concerted domain movements and/or allosteric interactions, such as those required for substrate binding, ion channel gating, or catalytic function.15,21–34 Figure 1 provides an overview of the broad range of equilibrium motions accessible under native state conditions, ranging from bond length vibrations, of the order of femtoseconds, to coupled movements of multimeric substructures, of the order of milliseconds or seconds. Figure 1 Equilibrium motions of proteins. Motions accessible near native state conditions range from femtoseconds (bond length vibrations) to milliseconds or slower (concerted movements of multiple subunits; passages between equilibrium substates). X-ray crystallographic ... 1.1.2. Functional Significance of Collective Motions In the last two decades, there has been a surge in the number of studies based on principal components analysis (PCA)36 of biomolecular structures and dynamics. These studies have proven useful in unraveling the collective modes, and in particular those at the low frequency end of the mode spectrum, that underlie the equilibrium dynamics of proteins.37 Normal mode analysis (NMA) of equilibrium structures,38,39 essential dynamics analysis (EDA) of the covariance matrices retrieved from MD runs,40 and singular value decomposition (SVD) of MD or Monte Carlo (MC) trajectories41–43 all fall in this category of PCA-based methods. Recently, a server has been developed to efficiently perform such calculations using a variety of input structures.44 PCA-based studies provide increasing support to the view that the apparently random fluctuations of proteins under native state conditions conceal contributions from highly cooperative movements (e.g., concerted opening and closing of domains) that are directly relevant to biological function. Functional movements indeed involve passages between collections of microstates or substates that coexist in a dynamic equilibrium (Figure 2). The most cooperative motions usually occur at the low frequency end of the mode spectrum. These modes engage large substructures, if not the entire structure, hence their designation as global or essential modes. They are intrinsically accessible to biomolecules, arising solely from structure. In a sense, in the same way as sequence encodes structure, structure encodes the equilibrium dynamics. We refer to these global movements that are collectively encoded by the 3-dimensional (3D) structure as intrinsic motions of the examined protein, intrinsic to the protein fold or topology of native contacts. Biomolecular structures conceivably evolved to favor the global modes that help them achieve their biological or allosteric functions.21 Briefly, the emerging paradigm is structure-encodes-dynamics-encodes-function, and an evolutionary pressure originating from functional dynamics requirements may have selected the relatively small space of functional structures. Figure 2 Energy profile of the native state modeled at different resolutions. N denotes the native state, modeled at a coarse-grained scale as a single energy minimum. A more detailed examination of the structure and energetics reveals two or more substates (S1, ... The predisposition of proteins to undergo functional changes in structure is now supported by numerous experimental and computational studies, and an increasing amount of data demonstrates that allosteric responses are driven by intrinsically accessible motions.15,23,24,45–51 These studies have brought a new understanding to the role of collective dynamics in protein functions, demonstrating in particular how the functions of membrane proteins such as signal transduction, pore opening, ion gating, or substrate translocation are enabled by the cooperative movements of symmetrically arranged subunits. These findings are in support of the original Monod–Wyman–Changeux (MWC) view of allosteric effects,52,53 the main tenets of which are predisposition of the structure to access alternative conformations via cooperative changes in structure (simultaneously engaging all subunits) and selection from this pool of accessible conformation to achieve biological function in the presence of ligand/substrate binding. Recent findings on the relevance of global modes to functional dynamics are presented below for select, widely studied membrane proteins. The goal here is to review NMA-based computational methods and their applications to membrane proteins. We will also discuss recent developments for improving the methodology and its implementation in structure refinement and drug discovery methods.


Nature Chemical Biology | 2009

Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages.

Gabriela Molina; Andreas Vogt; Ahmet Bakan; Weixiang Dai; Pierre E. Queiroz de Oliveira; Wade Znosko; Thomas E. Smithgall; Ivet Bahar; John S. Lazo; Billy W. Day; Michael Tsang

The dual specificity phosphatase 6 (Dusp6) functions as a feedback regulator of fibroblast growth factor (FGF) signaling to limit the activity of extracellular signal regulated kinase (ERK) 1 and 2. We have identified a small molecule inhibitor of Dusp6, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), using a transgenic zebrafish chemical screen. BCI treatment blocked Dusp6 activity and enhanced FGF target gene expression in zebrafish embryos. Docking simulations predicted an allosteric binding site for BCI within the phosphatase domain. In vitro studies supported a model that BCI inhibits Dusp6 catalytic activation by ERK2 substrate binding. A temporal role for Dusp6 in restricting cardiac progenitors and controlling heart organ size was uncovered with BCI treatment at varying developmental stages. This study highlights the power of in vivo zebrafish chemical screens to identify novel compounds targeting Dusp6, a component of the FGF signaling pathway that has eluded traditional high-throughput in vitro screens.


Journal of Chemical Theory and Computation | 2012

Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules.

Ahmet Bakan; Neysa Nevins; Ami S. Lakdawala; Ivet Bahar

Druggability assessment of a target protein has emerged in recent years as an important concept in hit-to-lead optimization. A reliable and physically relevant measure of druggability would allow informed decisions on the risk of investing in a particular target. Here, we define “druggability” as a quantitative estimate of binding sites and affinities for a potential drug acting on a specific protein target. In the present study, we describe a new methodology that successfully predicts the druggability and maximal binding affinity for a series of challenging targets, including those that function through allosteric mechanisms. Two distinguishing features of the methodology are (i) simulation of the binding dynamics of a diversity of probe molecules selected on the basis of an analysis of approved drugs and (ii) identification of druggable sites and estimation of corresponding binding affinities on the basis of an evaluation of the geometry and energetics of bound probe clusters. The use of the methodology for a variety of targets such as murine double mutant-2, protein tyrosine phosphatase 1B (PTP1B), lymphocyte function-associated antigen 1, vertebrate kinesin-5 (Eg5), and p38 mitogen-activated protein kinase provides examples for which the method correctly captures the location and binding affinities of known drugs. It also provides insights into novel druggable sites and the target’s structural changes that would accommodate, if not promote and stabilize, drug binding. Notably, the ability to identify high affinity spots even in challenging cases such as PTP1B or Eg5 shows promise as a rational tool for assessing the druggability of protein targets and identifying allosteric or novel sites for drug binding.


Experimental Biology and Medicine | 2014

In Vitro Platforms for Evaluating Liver Toxicity

Shyam Sundhar Bale; Lawrence Vernetti; Nina Senutovitch; Rohit Jindal; Manjunath Hegde; Albert Gough; William J. McCarty; Ahmet Bakan; Abhinav Bhushan; Tong Ying Shun; Inna Golberg; Richard DeBiasio; Berk Osman Usta; D. Lansing Taylor; Martin L. Yarmush

The liver is a heterogeneous organ with many vital functions, including metabolism of pharmaceutical drugs and is highly susceptible to injury from these substances. The etiology of drug-induced liver disease is still debated although generally regarded as a continuum between an activated immune response and hepatocyte metabolic dysfunction, most often resulting from an intermediate reactive metabolite. This debate stems from the fact that current animal and in vitro models provide limited physiologically relevant information, and their shortcomings have resulted in “silent” hepatotoxic drugs being introduced into clinical trials, garnering huge financial losses for drug companies through withdrawals and late stage clinical failures. As we advance our understanding into the molecular processes leading to liver injury, it is increasingly clear that (a) the pathologic lesion is not only due to liver parenchyma but is also due to the interactions between the hepatocytes and the resident liver immune cells, stellate cells, and endothelial cells; and (b) animal models do not reflect the human cell interactions. Therefore, a predictive human, in vitro model must address the interactions between the major human liver cell types and measure key determinants of injury such as the dosage and metabolism of the drug, the stress response, cholestatic effect, and the immune and fibrotic response. In this mini-review, we first discuss the current state of macro-scale in vitro liver culture systems with examples that have been commercialized. We then introduce the paradigm of microfluidic culture systems that aim to mimic the liver with physiologically relevant dimensions, cellular structure, perfusion, and mass transport by taking advantage of micro and nanofabrication technologies. We review the most prominent liver-on-a-chip platforms in terms of their physiological relevance and drug response. We conclude with a commentary on other critical advances such as the deployment of fluorescence-based biosensors to identify relevant toxicity pathways, as well as computational models to create a predictive tool.


Protein Science | 2011

Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins.

Lidio Meireles; Mert Gur; Ahmet Bakan; Ivet Bahar

Modeling protein flexibility constitutes a major challenge in accurate prediction of protein–ligand and protein–protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse‐grained normal mode analysis has been advantageously applied to modeling protein flexibility associated with ligand binding. First, we highlight recent studies that have shown that there is a close agreement between the large‐scale collective motions of proteins predicted by elastic network models and the structural changes experimentally observed upon ligand binding. Then, we discuss studies that have exploited the predicted soft modes in docking simulations. Two general strategies are noted: pregeneration of conformational ensembles that are then utilized as input for standard fixed‐backbone docking and protein structure deformation along normal modes concurrent to docking. These studies show that the structural changes apparently “induced” upon ligand binding occur selectively along the soft modes accessible to the protein prior to ligand binding. They further suggest that proteins offer suitable means of accommodating/facilitating the recognition and binding of their ligand, presumably acquired by evolutionary selection of the suitable three‐dimensional structure.


Bioinformatics | 2014

Evol and ProDy for Bridging Protein Sequence Evolution and Structural Dynamics

Ahmet Bakan; Anindita Dutta; Wenzhi Mao; Ying Liu; Chakra Chennubhotla; Timothy R. Lezon; Ivet Bahar

UNLABELLED Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. AVAILABILITY AND IMPLEMENTATION ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/.


Current Topics in Medicinal Chemistry | 2011

Development of Small-Molecule PUMA Inhibitors for Mitigating Radiation-Induced Cell Death

Gabriela Mustata; Mei Li; Nicki Zevola; Ahmet Bakan; Lin Zhang; Michael W. Epperly; Joel S. Greenberger; Jian Yu; Ivet Bahar

PUMA (p53 upregulated modulator of apoptosis) is a Bcl-2 homology 3 (BH3)-only Bcl-2 family member and a key mediator of apoptosis induced by a wide variety of stimuli. PUMA is particularly important in initiating radiation-induced apoptosis and damage in the gastrointestinal and hematopoietic systems. Unlike most BH3-only proteins, PUMA neutralizes all five known antiapoptotic Bcl-2 members though high affinity interactions with its BH3 domain to initiate mitochondria-dependent cell death. Using structural data on the conserved interactions of PUMA with Bcl-2-like proteins, we developed a pharmacophore model that mimics these interactions. In silico screening of the ZINC 8.0 database with this pharmacophore model yielded 142 compounds that could potentially disrupt these interactions. Thirteen structurally diverse compounds with favorable in silico ADME/Toxicity profiles have been retrieved from this set. Extensive testing of these compounds using cell-based and cell-free systems identified lead compounds that confer considerable protection against PUMA-dependent and radiation-induced apoptosis, and inhibit the interaction between PUMA and Bcl-xL.


Stem Cell Research & Therapy | 2013

Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans

Abhinav Bhushan; Nina Senutovitch; Shyam Sundhar Bale; William J. McCarty; Manjunath Hegde; Rohit Jindal; Inna Golberg; O. Berk Usta; Martin L. Yarmush; Lawrence Vernetti; Albert Gough; Ahmet Bakan; Tong Ying Shun; Richard Biasio; D. Lansing Taylor

Although the process of drug development requires efficacy and toxicity testing in animals prior to human testing, animal models have limited ability to accurately predict human responses to xenobiotics and other insults. Societal pressures are also focusing on reduction of and, ultimately, replacement of animal testing. However, a variety of in vitro models, explored over the last decade, have not been powerful enough to replace animal models. New initiatives sponsored by several US federal agencies seek to address this problem by funding the development of physiologically relevant human organ models on microscopic chips. The eventual goal is to simulate a human-on-a-chip, by interconnecting the organ models, thereby replacing animal testing in drug discovery and development. As part of this initiative, we aim to build a three-dimensional human liver chip that mimics the acinus, the smallest functional unit of the liver, including its oxygen gradient. Our liver-on-a-chip platform will deliver a microfluidic three-dimensional co-culture environment with stable synthetic and enzymatic function for at least 4 weeks. Sentinel cells that contain fluorescent biosensors will be integrated into the chip to provide multiplexed, real-time readouts of key liver functions and pathology. We are also developing a database to manage experimental data and harness external information to interpret the multimodal data and create a predictive platform.


Current Medicinal Chemistry | 2008

Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: Insights from structure-based modeling and high throughput screening

Ahmet Bakan; John S. Lazo; Peter Wipf; Kay M. Brummond; Ivet Bahar

Dual-specificity phosphatases (DSPs) are important, but poorly understood, cell signaling enzymes that remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Deregulation of DSPs has been implicated in cancer, obesity, diabetes, inflammation, and Alzheimer’s disease. Due to their biological and biomedical significance, DSPs have increasingly become the subject of drug discovery high-throughput screening (HTS) and focused compound library development efforts. Progress in identifying selective and potent DSP inhibitors has, however, been restricted by the lack of sufficient structural data on inhibitor-bound DSPs. The shallow, almost flat, substrate binding sites in DSPs have been a major factor in hampering the rational design and the experimental development of active site inhibitors. Recent experimental and virtual HTS studies, as well as advances in molecular modeling, provide new insights into the potential mechanisms for substrate recognition and binding by this important class of enzymes. We present herein an overview of the progress, along with a brief description of applications to two types of DSPs: Cdc25 and MAP kinase phosphatase (MKP) family members. In particular, we focus on combined computational and experimental efforts for designing Cdc25B and MKP-1 inhibitors and understanding their mechanisms of interactions with their target proteins. These studies emphasize the utility of developing computational models and methods that meet the two major challenges currently faced in structure-based in silico design of lead compounds: the conformational flexibility of the target protein and the entropic contribution to the selection and stabilization of particular bound conformers.

Collaboration


Dive into the Ahmet Bakan's collaboration.

Top Co-Authors

Avatar

Ivet Bahar

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Vogt

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Billy W. Day

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Derek C. Angus

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Tsang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Peter Wipf

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sachin Yende

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge