Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmet Tarik Baykal is active.

Publication


Featured researches published by Ahmet Tarik Baykal.


Journal of Proteome Research | 2014

mTor is a signaling hub in cell survival: a mass-spectrometry-based proteomics investigation.

Zhi Tang; Ahmet Tarik Baykal; Hui Gao; Hernan Concha Quezada; Haiyan Zhang; Erika Bereczki; Muge Serhatli; Betül Baykal; Cigdem Acioglu; Shan Wang; Eniko Ioja; Xinying Ji; Yan Zhang; Zhi-Zhong Guan; Bengt Winblad; Jin-Jing Pei

mTor plays a central role in controlling protein homeostasis and cell survival. Recently, we have demonstrated that perturbations of mTor signaling are implicated in Alzheimers disease (AD) and that mTor complex 1 (mTorC1) is involved in the formation of toxic phospho-tau. Therefore, we employed mass-spectrometry-based proteomics to identify specific protein expression changes in relation with cell survival in human neuroblastoma SH-SY5Y cells expressing genetically modified mTor. Cell death in SH-SY5Y cells was induced by moderate serum deprivation. Using flow cytometry we observed that up-regulated mTor complex 2 (mTorC2) increases the number of viable cells. By using a combination approach of proteomic and enrichment analysis we have identified several proteins (Thioredoxin-dependent peroxide reductase, Peroxiredoxin-5, Cofilin 1 (non-muscle), Annexin A5, Mortalin, and 14-3-3 protein zeta/delta) involved in mitochondrial integrity, apoptotosis, and pro-survival functions (caspase inhibitor activity and anti-apoptosis) that were significantly altered by mTor activity modulation. The major findings of this study are the implication of mTorC2 but not mTorC1 in cell viability modulation by activating the pro-survival machinery. Taken together, these results suggest that up-regulated mTorC2 might be playing an important role in promoting cell survival by suppressing the mitochondria-caspase-apoptotic pathway in vitro.


Anti-Cancer Drugs | 2014

Evaluation of the molecular mechanisms of a palladium(II) saccharinate complex with terpyridine as an anticancer agent.

Omer Kacar; Zelal Adiguzel; Veysel T. Yilmaz; Yuksel Cetin; Buse Cevatemre; Nazli Arda; Ahmet Tarik Baykal; Engin Ulukaya; Ceyda Acilan

Metal-based compounds represent promising anticancer therapeutic agents. In this study, the mechanism of action of a novel metal-based drug, a palladium(II) (Pd) complex ([PdCl(terpy)](sac)·2H2O, terpy=2,2′:6′,2′′-terpyridine and sac=saccharinate), was elucidated. The tested compound induced cytotoxicity in nine different human cancer cell lines that originated from various organs, suggesting a broad spectrum of activity. The IC50 values were significantly higher for noncancerous cells when compared with cancer cells. We found that cells treated with the Pd(II) complex exhibited increased caspase 3/7 activities and condensed/fragmented nuclei, as demonstrated by nuclear staining and DNA laddering. Morphological features, such as cellular shrinkage and blebbing, were also observed, indicating that apoptosis was the primary mechanism of cell death. Pd(II) treatment induced DNA double-stranded breaks both in vitro and in vivo, potentially accounting for the source of stress in these cells. Although caspase 3/7 activities were elevated after Pd(II) treatment, silencing or using inhibitors of caspase 3 did not block apoptosis. Other molecules that could potentially play a role in Pd(II)-induced apoptosis, such as p53 and Bax, were also tested using silencing technology. However, none of these proteins were essential for cell death, indicating either that these molecules do not participate in Pd(II)-induced apoptosis or that other pathways were activated in their absence. Hence, this new molecule might represent a promising anticancer agent that exhibits cytotoxicity in p53-mutant, Bax-mutant, and/or caspase 3-mutant cancer cells.


Proteomics | 2014

Generating a detailed protein profile of Fasciola hepatica during the chronic stage of infection in cattle

Orçun Haçarız; Ahmet Tarik Baykal; Mete Akgün; Pınar Kavak; Mahmut Şamil Sağıroğlu; Gearóid P. Sayers

Fasciola hepatica is a trematode helminth causing a damaging disease, fasciolosis, in ruminants and humans. Comprehensive proteomic studies broaden our knowledge of the parasites protein profile, and provide new insights into the development of more effective strategies to deal with fasciolosis. The objective of this study was to generate a comprehensive profile of F. hepatica proteins expressed during the chronic stage of infection in cattle by building on previous efforts in this area. The approach included an improved sample preparation procedure for surface and internal layers of the parasite, the application of nano‐UPLC‐ESI‐qTOF‐MS (nano‐ultra‐performance LC and ESI quadrupole TOF MS) integrated with different acquisition methods and in silico database search against various protein databases and a transcript database including a new assembly of publically available EST. Of a total of 776 identified proteins, 206 and 332 were specific to the surface and internal layers of the parasite, respectively. Furthermore, 238 proteins were common to both layers, with comparative differences of 172 proteins detected. Specific proteins not previously identified in F. hepatica, but shown to be immunomodulatory or potential drug targets for other parasites, are discussed.


Brain Behavior and Immunity | 2016

Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms

Cigdem Acioglu; Ersilia Mirabelli; Ahmet Tarik Baykal; Li Ni; Ayomi Ratnayake; Robert F. Heary; Stella Elkabes

Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes. Neuronal TLR9 antagonism confers protection against excitotoxic death. It is likely that this neuroprotection is partly due to the attenuation of the ER stress response provoked by excitotoxicity. Although CpG ODN 2088 limits the supportive effects of astrocytes on neurons, it could potentially exert beneficial effects by decreasing the release of pro-inflammatory cytokines and chemokines by astroglia. These findings highlight the multiple roles of TLR9 in the SC and have implications for pathological conditions including SCI where excitotoxicity and neuroinflammation play a prominent role in neuronal degeneration.


Biochimica et Biophysica Acta | 2017

Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases

Yasemin Ucal; Zeynep Aslıhan Durer; Hakan Atak; Elif Kadioglu; Betul Sahin; Abdurrahman Coskun; Ahmet Tarik Baykal; Aysel Ozpinar

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) enables localization of analytes of interest along with histology. More specifically, MALDI-IMS identifies the distributions of proteins, peptides, small molecules, lipids, and drugs and their metabolites in tissues, with high spatial resolution. This unique capacity to directly analyze tissue samples without the need for lengthy sample preparation reduces technical variability and renders MALDI-IMS ideal for the identification of potential diagnostic and prognostic biomarkers and disease gradation. MALDI-IMS has evolved rapidly over the last decade and has been successfully used in both medical and basic research by scientists worldwide. In this review, we explore the clinical applications of MALDI-IMS, focusing on the major cancer types and neurodegenerative diseases. In particular, we re-emphasize the diagnostic potential of IMS and the challenges that must be confronted when conducting MALDI-IMS in clinical settings. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.


Molecular Biology Reports | 2014

Evaluation of apoptotic molecular pathways for smooth muscle cells isolated from thoracic aortic aneurysms in response to oxidized sterols

Zelal Adiguzel; Nazli Arda; Omer Kacar; Muge Serhatli; Serpil Gezer Tas; Ahmet Tarik Baykal; Kemal Baysal; Ceyda Acilan

Oxysterols, oxygenated derivatives of cholesterol, are found abundantly in the plasma and atherosclerotic plaques, a common risk factor for thoracic aortic aneurysms (TAAs). Among the oxysterols, namely 7-ketocholesterol (7-KC) and 25-hydroxycholesterol (25-OHC), lead both to induction of reactive oxygen species (ROS) in cells and to apoptosis in smooth muscle cells (SMCs) probably due to increased oxidative stress. Since loss of SMCs through apoptosis is a major event in TAA formation, it is important to understand the molecular pathways of apoptosis in response to ROS in TAAs. Very little is known about the effect of oxysterols on TAA SMCs. Therefore, we investigated molecular pathways participating in the oxysterol induced cell death of TAAs. Our results showed that TAA SMCs died mainly as a result of apoptosis as suggested by cellular shrinkage, blebbing, DNA condensation/fragmentation in response to oxysterol treatment. There was no significant difference in oxysterol induced cell death between TAA and control SMCs. Addition of antioxidant molecules prevented cell death, hence ROS appears to be involved in the apoptosis of these cells. While oxysterol treatment increased caspase 3 activity, cell death was not rescued in its absence. Efficient silencing of other targets including apoptotic proteins (p53, Bax), and survival proteins (Akt1, Akt2) showed that apoptosis can occur through p53, and Bax independent pathways. Silencing Akt1 or Akt2 did not lead to further cell death. These results indicate that oxysterols can induce several cell death pathways in TAA SMCs.


Proteome Science | 2016

Proteomic profiling of HBV infected liver biopsies with different fibrotic stages

Seyma Katrinli; Kamil Ozdil; Abdurrahman Sahin; Oguzhan Ozturk; Gozde Kir; Ahmet Tarik Baykal; Emel Akgun; Omer Sinan Sarac; Mehmet Sokmen; H. Levent Doğanay; Gizem Dinler Doganay

BackgroundHepatitis B virus (HBV) is a global health problem, and infected patients if left untreated may develop cirrhosis and eventually hepatocellular carcinoma. This study aims to enlighten pathways associated with HBV related liver fibrosis for delineation of potential new therapeutic targets and biomarkers.MethodsTissue samples from 47 HBV infected patients with different fibrotic stages (F1 to F6) were enrolled for 2D-DIGE proteomic screening. Differentially expressed proteins were identified by mass spectrometry and verified by western blotting. Functional proteomic associations were analyzed by EnrichNet application.ResultsFibrotic stage variations were observed for apolipoprotein A1 (APOA1), pyruvate kinase PKM (KPYM), glyceraldehyde 3-phospahate dehydrogenase (GAPDH), glutamate dehydrogenase (DHE3), aldehyde dehydrogenase (ALDH2), alcohol dehydrogenase (ALDH1A1), transferrin (TRFE), peroxiredoxin 3 (PRDX3), phenazine biosynthesis-like domain-containing protein (PBLD), immuglobulin kappa chain C region (IGKC), annexin A4 (ANXA4), keratin 5 (KRT5). Enrichment analysis with Reactome and Kegg databases highlighted the possible involvement of platelet release, glycolysis and HDL mediated lipid transport pathways. Moreover, string analysis revealed that HIF-1α (Hypoxia-inducible factor 1-alpha), one of the interacting partners of HBx (Hepatitis B X protein), may play a role in the altered glycolytic response and oxidative stress observed in liver fibrosis.ConclusionsTo our knowledge, this is the first protomic research that studies HBV infected fibrotic human liver tissues to investigate alterations in protein levels and affected pathways among different fibrotic stages. Observed changes in the glycolytic pathway caused by HBx presence and therefore its interactions with HIF-1α can be a target pathway for novel therapeutic purposes.


Immunobiology | 2014

Hepatitis B virus e antigen (HBeAg) may have a negative effect on dendritic cell generation.

Ibrahim Hatipoglu; Duygu Ercan; Ceyda Acilan; Aynur Basalp; Deniz Durali; Ahmet Tarik Baykal

Hepatitis B virus (HBV) continues to be a serious worldwide health problem despite the use of protective HBV vaccines and therapeutic regimens against chronic HBV infection. Chronic HBV patients cannot induce sufficient immune responses against the virus. HBV and its antigens are believed to suppress immune responses during chronic infection. Hence, studying the role of HBV in immune suppression is very important for the development of alternative therapeutic strategies for HBV infections. In the present study, we investigated the effect of Hepatitis B virus e antigen (HBeAg) on the generation of bone marrow derived dendritic cells (BMDCs) and the stimulation of plasmacytoid DCs (pDCs). In the presence of HBeAg, the ratio of BMDCs was decreased, but the ratio of CD11b(+)Ly6G(+) immature myeloid cells was increased. The expression of 47 proteins was also changed during HBeAg treatment; however, CpG-induced MHC-II expression on pDCs was not affected. Our results indicate that HBeAg may have a negative effect on the generation of DCs from bone morrow precursors.


PLOS ONE | 2016

Proteomic Analysis of Kidney Preservation Solutions Prior to Renal Transplantation.

Abdurrahman Coskun; Ahmet Tarik Baykal; Dilek Kazan; Muslum Akgoz; Merve Oztug Senal; Ibrahim Berber; I. Titiz; Gokhan Bilsel; Hakan Kilercik; Kübra Karaosmanoğlu; Muslum Cicek; Ilknur Yurtsever; Cevat Yazıcı; Niels Olsen Saraiva Câmara

One of the main issues in kidney transplantation is the optimal functional preservation of the organ until its transplantation into the appropriate recipient. Despite intensive efforts, the functional preservation period remains limited to hours. During this time, as a result of cellular injury, various proteins, peptides, and other molecules are released by the organ into the preservation medium. In this study, we used proteomic techniques to analyze the protein profiles of preservation solutions in which organs had been preserved prior to their transplantation. Samples were obtained from the preservation solutions of 25 deceased donor kidneys scheduled for transplantation. The protein profiles of the solutions were analyzed using 2D gel electrophoresis/MALDI-TOF and LC-MS/MS. We identified and quantified 206 proteins and peptides belonging to 139 different groups. Of these, 111 proteins groups were belonging to kidney tissues. This study used proteomic techniques to analyze the protein profiles of organ preservation solutions. These findings will contribute to the development of improved preservation solutions to effectively protect organs for transplantation.


Molecular Neurobiology | 2018

Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT

Mustafa Caglar Beker; Berrak Caglayan; Esra Yalcin; Ahmet Burak Caglayan; Seyma Turkseven; Busra Gurel; Taha Kelestemur; Elif Sertel; Zafer Sahin; Selim Kutlu; Ulkan Kilic; Ahmet Tarik Baykal; Ertugrul Kilic

Occurrence of stroke cases displays a time-of-day variation in human. However, the mechanism linking circadian rhythm to the internal response mechanisms against pathophysiological events after ischemic stroke remained largely unknown. To this end, temporal changes in the susceptibility to ischemia/reperfusion (I/R) injury were investigated in mice in which the ischemic stroke induced at four different Zeitgeber time points with 6-h intervals (ZT0, ZT6, ZT12, and ZT18). Besides infarct volume and brain swelling, neuronal survival, apoptosis, ischemia, and circadian rhythm related proteins were examined using immunohistochemistry, Western blot, planar surface immune assay, and liquid chromatography–mass spectrometry tools. Here, we present evidence that midnight (ZT18; 24:00) I/R injury in mice resulted in significantly improved infarct volume, brain swelling, neurological deficit score, neuronal survival, and decreased apoptotic cell death compared with ischemia induced at other time points, which were associated with increased expressions of circadian proteins Bmal1, PerI, and Clock proteins and survival kinases AKT and Erk-1/2. Moreover, ribosomal protein S6, mTOR, and Bad were also significantly increased, while the levels of PRAS40, negative regulator of AKT and mTOR, and phosphorylated p53 were decreased at this time point compared to ZT0 (06:00). Furthermore, detailed proteomic analysis revealed significantly decreased CSKP, HBB-1/2, and HBA levels, while increased GNAZ, NEGR1, IMPCT, and PDE1B at midnight as compared with early morning. Our results indicate that nighttime I/R injury results in less severe neuronal damage, with increased neuronal survival, increased levels of survival kinases and circadian clock proteins, and also alters the circadian-related proteins.

Collaboration


Dive into the Ahmet Tarik Baykal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muge Serhatli

TÜBİTAK Marmara Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muge Serhatli

TÜBİTAK Marmara Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge