Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahrom Ham is active.

Publication


Featured researches published by Ahrom Ham.


Journal of The American Society of Nephrology | 2014

Renalase Prevents AKI Independent of Amine Oxidase Activity

Ling Wang; Heino Velazquez; Gilbert W. Moeckel; John J. Chang; Ahrom Ham; H. Thomas Lee; Robert Safirstein; Gary V. Desir

AKI is characterized by increased catecholamine levels and hypertension. Renalase, a secretory flavoprotein that oxidizes catecholamines, attenuates ischemic injury and the associated increase in catecholamine levels in mice. However, whether the amine oxidase activity of renalase is involved in preventing ischemic injury is debated. In this study, recombinant renalase protected human proximal tubular (HK-2) cells against cisplatin- and hydrogen peroxide-induced necrosis. Similarly, genetic depletion of renalase in mice (renalase knockout) exacerbated kidney injury in animals subjected to cisplatin-induced AKI. Interestingly, compared with the intact renalase protein, a 20-amino acid peptide (RP-220), which is conserved in all known renalase isoforms, but lacks detectable oxidase activity, was equally effective at protecting HK-2 cells against toxic injury and preventing ischemic injury in wild-type mice. Furthermore, in vitro treatment with RP-220 or recombinant renalase rapidly activated Akt, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinases and downregulated c-Jun N-terminal kinase. In summary, renalase promotes cell survival and protects against renal injury in mice through the activation of intracellular signaling cascades, independent of its ability to metabolize catecholamines, and we have identified the region of renalase required for these effects. Renalase and related peptides show potential as therapeutic agents for the prevention and treatment of AKI.


Kidney International | 2013

The volatile anesthetic isoflurane induces ecto-5′-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury

Mihwa Kim; Ahrom Ham; Joo Yun Kim; Kevin M. Brown; H. Thomas Lee

The volatile anesthetic isoflurane protects against renal ischemia and reperfusion injury by releasing renal tubular TGF-β1. Since adenosine is a powerful cytoprotective molecule, we tested whether TGF-β1 generated by isoflurane induces renal tubular ecto-5′-nucleotidase (CD73) and adenosine to protect against renal ischemia and reperfusion injury. Isoflurane induced new CD73 synthesis and increased adenosine generation in cultured kidney proximal tubule cells and in mouse kidney. Moreover, a TGF-β1 neutralizing antibody prevented isoflurane-mediated induction of CD73 activity. Mice anesthetized with isoflurane after renal ischemia and reperfusion had significantly reduced plasma creatinine and decreased renal tubular necrosis, neutrophil infiltration and apoptosis compared to pentobarbital-anesthetized mice. Isoflurane failed to protect against renal ischemia and reperfusion injury in CD73 deficient mice, in mice pretreated with a selective CD73 inhibitor or mice treated with an adenosine receptor antagonist. The TGF-β1 neutralizing antibody or the CD73 inhibitor attenuated isoflurane-mediated protection against HK-2 cell apoptosis. Thus, isoflurane causes TGF-β1-dependent induction of renal tubular CD73 and adenosine generation to protect against renal ischemia and reperfusion injury. Modulation of this pathway may have important therapeutic implications to reduce morbidity and mortality arising from ischemic acute kidney injury.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury

H. Thomas Lee; Mihwa Kim; Joo Yun Kim; Kevin M. Brown; Ahrom Ham; Yuko Mori-Akiyama

Intestinal ischemia-reperfusion (I/R) injury causes severe illness frequently complicated by remote multiorgan dysfunction and sepsis. Recent studies implicated interleukin-17A (IL-17A) in regulating inflammation, autoimmunity, and I/R injury. Here, we determined whether IL-17A is critical for generation of intestinal I/R injury and subsequent liver and kidney injury. Mice subjected to 30 min of superior mesenteric artery ischemia not only developed severe small intestinal injury (necrosis, apoptosis, and neutrophil infiltration) but also developed significant renal and hepatic injury. We detected large increases in IL-17A in the small intestine, liver, and plasma. IL-17A is critical for generating these injuries, since genetic deletion of IL-17A- or IL-17A-neutralizing antibody treatment markedly protected against intestinal I/R injury and subsequent liver and kidney dysfunction. Intestinal I/R caused greater increases in portal plasma and small intestine IL-17A, suggesting an intestinal source for IL-17A generation. We also observed that intestinal I/R caused rapid small intestinal Paneth cell degranulation and induced murine α-defensin cryptdin-1 expression. Furthermore, genetic or pharmacological depletion of Paneth cells significantly attenuated the intestinal I/R injury as well as hepatic and renal dysfunction. Finally, Paneth cell depletion significantly decreased small intestinal, hepatic, and plasma IL-17A levels after intestinal I/R. Taken together, we propose that Paneth cell-derived IL-17A may play a critical role in intestinal I/R injury as well as extraintestinal organ dysfunction.


Journal of Immunology | 2012

Paneth cell-mediated multiorgan dysfunction after acute kidney injury

Sang Won Park; Mihwa Kim; Joo Yun Kim; Ahrom Ham; Kevin M. Brown; Yuko Mori-Akiyama; Andre J. Ouellette; Vivette D. D’Agati; H. Thomas Lee

Acute kidney injury (AKI) is frequently complicated by extrarenal multiorgan injury, including intestinal and hepatic dysfunction. In this study, we hypothesized that a discrete intestinal source of proinflammatory mediators drives multiorgan injury in response to AKI. After induction of AKI in mice by renal ischemia-reperfusion or bilateral nephrectomy, small intestinal Paneth cells increased the synthesis and release of IL-17A in conjunction with severe intestinal apoptosis and inflammation. We also detected significantly increased IL-17A in portal and systemic circulation after AKI. Intestinal macrophages appear to transport released Paneth cell granule constituents induced by AKI, away from the base of the crypts into the liver. Genetic or pharmacologic depletion of Paneth cells decreased small intestinal IL-17A secretion and plasma IL-17A levels significantly and attenuated intestinal, hepatic, and renal injury after AKI. Similarly, portal delivery of IL-17A in macrophage-depleted mice decreased markedly. In addition, intestinal, hepatic, and renal injury following AKI was attenuated without affecting intestinal IL-17A generation. In conclusion, AKI induces IL-17A synthesis and secretion by Paneth cells to initiate intestinal and hepatic injury by hepatic and systemic delivery of IL-17A by macrophages. Modulation of Paneth cell dysregulation may have therapeutic implications by reducing systemic complications arising from AKI.


American Journal of Physiology-renal Physiology | 2012

A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia reperfusion injury

Sang Won Park; Joo Yun Kim; Ahrom Ham; Kevin M. Brown; Mihwa Kim; H. Thomas Lee

Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R injury without the undesirable side effects of systemic A(1)AR activation by potentiating the cytoprotective effects of renal adenosine generated locally by ischemia. Pretreatment with PD-81723 produced dose-dependent protection against renal I/R injury in A(1)AR wild-type mice but not in A(1)AR-deficient mice. Significant reductions in renal tubular necrosis, neutrophil infiltration, and inflammation as well as tubular apoptosis were observed in A(1)AR wild-type mice treated with PD-81723. Furthermore, PD-81723 decreased apoptotic cell death in human proximal tubule (HK-2) cells in culture, which was attenuated by a specific A(1)AR antagonist (8-cyclopentyl-1,3-dipropylxanthine). Mechanistically, PD-81723 induced sphingosine kinase (SK)1 mRNA and protein expression in HK-2 cells and in the mouse kidney. Supporting a critical role of SK1 in A(1)AR allosteric enhancer-mediated renal protection against renal I/R injury, PD-81723 failed to protect SK1-deficient mice against renal I/R injury. Finally, proximal tubule sphingosine-1-phosphate type 1 receptors (S1P(1)Rs) are critical for PD-81723-induced renal protection, as mice selectively deficient in renal proximal tubule S1P(1)Rs (S1P(1)R(flox/flox) PEPCK(Cre/-) mice) were not protected against renal I/R injury with PD-81723 treatment. Taken together, our experiments demonstrate potent renal protection with PD-81723 against I/R injury by reducing necrosis, inflammation, and apoptosis through the induction of renal tubular SK1 and activation of proximal tubule S1P(1)Rs. Our findings imply that selectively enhancing A(1)AR activation by locally produced renal adenosine may be a clinically useful therapeutic option to attenuate ischemic acute kidney injury without systemic side effects.


American Journal of Physiology-renal Physiology | 2014

Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury

Ahrom Ham; May M. Rabadi; Mihwa Kim; Kevin M. Brown; Zhe Ma; H. Thomas Lee

Peptidyl arginine deiminase (PAD)4 is a nuclear enzyme that catalyzes the posttranslational conversion of arginine residues to citrulline. Posttranslational protein citrullination has been implicated in several inflammatory autoimmune diseases, including rheumatoid arthritis, colitis, and multiple sclerosis. Here, we tested the hypothesis that PAD4 contributes to ischemic acute kidney injury (AKI) by exacerbating the inflammatory response after renal ischemia-reperfusion (I/R). Renal I/R injury in mice increased PAD4 activity as well as PAD4 expression in the mouse kidney. After 30 min of renal I/R, vehicle-treated mice developed severe AKI with large increases in plasma creatinine. In contrast, mice pretreated with PAD4 inhibitors (2-chloroamidine or streptonigrin) had significantly reduced renal I/R injury. Further supporting a critical role for PAD4 in generating ischemic AKI, mice pretreated with recombinant human PAD4 (rPAD4) protein and subjected to mild (20 min) renal I/R developed exacerbated ischemic AKI. Consistent with the hypothesis that PAD4 regulates renal tubular inflammation after I/R, mice treated with a PAD4 inhibitor had significantly reduced renal neutrophil chemotactic cytokine (macrophage inflammatory protein-2 and keratinocyte-derived cytokine) expression and had decreased neutrophil infiltration. Furthermore, mice treated with rPAD4 had significantly increased renal tubular macrophage inflammatory protein-2 and keratinocyte-derived cytokine expression as well as increased neutrophil infiltration and necrosis. Finally, cultured mouse kidney proximal tubules treated with rPAD4 had significantly increased proinflammatory chemokine expression compared with vehicle-treated cells. Taken together, our results suggest that PAD4 plays a critical role in renal I/R injury by increasing renal tubular inflammatory responses and neutrophil infiltration after renal I/R.


American Journal of Physiology-renal Physiology | 2012

Interleukin-11 protects against renal ischemia and reperfusion injury

H. Thomas Lee; Sang Won Park; Mihwa Kim; Ahrom Ham; Lana J. Anderson; Kevin M. Brown; George N. Cox

Renal ischemia reperfusion (IR) injury causes renal tubular necrosis, apoptosis, and inflammation leading to acute and chronic kidney dysfunction. IL-11 is a multifunctional hematopoietic cytokine clinically approved to treat chemotherapy-induced thrombocytopenia. Recent studies suggest that IL-11 also has potent antiapoptotic and antinecrotic properties. In this study, we tested the hypothesis that exogenous IL-11 protects against renal IR injury and determined the mechanisms involved in renal protection. Pretreatment with human recombinant IL-11 (HR IL-11) or with long-acting site-specific polyethylene glycol (PEG)-conjugated human IL-11 analog (PEGylated IL-11) produced partial but significant protection against renal IR injury in mice. In addition, HR IL-11 or PEGylated IL-11 given 30-60 min after IR also provided renal protection in mice. Significant reductions in renal tubular necrosis and neutrophil infiltration as well as tubular apoptosis were observed in mice treated with HR IL-11 or PEGylated IL-11. Furthermore, HR IL-11 or PEGylated IL-11 decreased both necrosis and apoptosis in human proximal tubule (HK-2) cells in culture. Mechanistically, IL-11 increased nuclear translocation of hypoxia-inducible factor-1α (HIF-1α) and induced sphingosine kinase-1 (SK1) expression and activity in HK-2 cells. Moreover, selective HIF-1α inhibitors blocked IL-11-mediated induction of SK1 in HK-2 cells. Finally, HR IL-11 or PEGylated IL-11 failed to protect against renal IR injury in SK1-deficient mice. Together, our data show powerful renal protective effects of exogenous IL-11 against IR injury by reducing necrosis, inflammation, and apoptosis through induction of SK1 via HIF-1α.


Kidney International | 2014

Selective deletion of the endothelial sphingosine-1-phosphate 1 receptor exacerbates kidney ischemia–reperfusion injury

Ahrom Ham; Mihwa Kim; Joo Yun Kim; Kevin M. Brown; Marcus Fruttiger; H. Thomas Lee

The role for the endothelial sphingosine-1-phosphate 1 receptor (S1P1R) in acute kidney injury (AKI) remains unclear as germline endothelial S1P1R deletion is embryonically lethal. Here, we generated conditional endothelial S1P1R deficiency by crossing mice with floxed S1P1R with mice expressing a tamoxifen-inducible form of Cre recombinase under the transcriptional control of the platelet-derived growth factor-β gene. Mice with tamoxifen-induced deletion of endothelial S1P1R had increased renal tubular necrosis, inflammation, impaired vascular permeability as well as exacerbated renal tubular apoptosis after ischemic AKI compared to tamoxifen-treated wild type mice. Moreover, endothelial S1P1R deletion resulted in increased hepatic injury after ischemic AKI. As a potential mechanism for exacerbated renal injury, conditional endothelial S1P1R null mice had markedly reduced endothelial HSP27 expression compared to wild type mice. Cultured glomerular endothelial cells treated with a specific S1P1R antagonist (W146) for 3 days also showed reduced HSP27 expression compared to vehicle treated cells. Finally, mice treated with W146 for 3 days also showed reduced endothelial HSP27 expression as well as exacerbated renal and hepatic injury after ischemic AKI. Thus, our studies demonstrate a protective role for endothelial S1P1R against ischemic AKI most likely by regulating endothelial barrier integrity and endothelial HSP27 expression.


Kidney International | 2014

Basic ResearchSelective deletion of the endothelial sphingosine-1-phosphate 1 receptor exacerbates kidney ischemia–reperfusion injury

Ahrom Ham; Mihwa Kim; Joo Yun Kim; Kevin M. Brown; Marcus Fruttiger; H. Thomas Lee

The role for the endothelial sphingosine-1-phosphate 1 receptor (S1P1R) in acute kidney injury (AKI) remains unclear as germline endothelial S1P1R deletion is embryonically lethal. Here, we generated conditional endothelial S1P1R deficiency by crossing mice with floxed S1P1R with mice expressing a tamoxifen-inducible form of Cre recombinase under the transcriptional control of the platelet-derived growth factor-β gene. Mice with tamoxifen-induced deletion of endothelial S1P1R had increased renal tubular necrosis, inflammation, impaired vascular permeability as well as exacerbated renal tubular apoptosis after ischemic AKI compared to tamoxifen-treated wild type mice. Moreover, endothelial S1P1R deletion resulted in increased hepatic injury after ischemic AKI. As a potential mechanism for exacerbated renal injury, conditional endothelial S1P1R null mice had markedly reduced endothelial HSP27 expression compared to wild type mice. Cultured glomerular endothelial cells treated with a specific S1P1R antagonist (W146) for 3 days also showed reduced HSP27 expression compared to vehicle treated cells. Finally, mice treated with W146 for 3 days also showed reduced endothelial HSP27 expression as well as exacerbated renal and hepatic injury after ischemic AKI. Thus, our studies demonstrate a protective role for endothelial S1P1R against ischemic AKI most likely by regulating endothelial barrier integrity and endothelial HSP27 expression.


PLOS ONE | 2014

The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

Mihwa Kim; Ahrom Ham; Katelyn Yu-Mi Kim; Kevin M. Brown; H. Thomas Lee

Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation.

Collaboration


Dive into the Ahrom Ham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Mori-Akiyama

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre J. Ouellette

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

D'Agati Vd

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge