Ai Dong Qi
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ai Dong Qi.
British Journal of Pharmacology | 2001
Ai Dong Qi; Charles Kennedy; T. Kendall Harden; Robert A. Nicholas
The human P2Y11 (hP2Y11) receptor was stably expressed in two cell lines, 1321N1 human astrocytoma cells (1321N1‐hP2Y11) and Chinese hamster ovary cells (CHO‐hP2Y11), and its coupling to phospholipase C and adenylyl cyclase was assessed. In 1321N1‐hP2Y11 cells, ATP promoted inositol phosphate (IP) accumulation with low μM potency (EC50=8.5±0.1 μM), whereas it was 15 fold less potent (130±10 μM) in evoking cyclic AMP production. In CHO‐hP2Y11 cells, ATP promoted IP accumulation with slightly higher potency (EC50=3.6±1.3 μM) than in 1321N1‐hP2Y11 cells, but it was still 15 fold less potent in promoting cyclic AMP accumulation (EC50=62.4±15.6 μM) than for IP accumulation. Comparable differences in potencies for promoting the two second messenger responses were observed with other adenosine nucleotide analogues. In 1321N1‐hP2Y11 and CHO‐hP2Y11 cells, down regulation of PKC by chronic treatment with phorbol ester decreased ATP‐promoted cyclic AMP accumulation by 60 – 80% (P<0.001) with no change in its potency. Likewise, chelation of intracellular Ca2+ decreased ATP‐promoted cyclic AMP accumulation by ∼45% in 1321N1‐hP2Y11 cells, whereas chelation had no effect on either the efficacy or potency of ATP in CHO‐hP2Y11 cells. We conclude that coupling of hP2Y11 receptors to adenylyl cyclase in these cell lines is much weaker than coupling to phospholipase C, and that activation of PKC and intracellular Ca2+ mobilization as consequences of inositol lipid hydrolysis potentiates the capacity of ATP to increase cyclic AMP accumulation in both 1321N1‐hP2Y11 and CHO‐hP2Y11 cells.
Journal of Pharmacology and Experimental Therapeutics | 2013
Ai Dong Qi; T. Kendall Harden; Robert A. Nicholas
The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars, and cysteinyl leukotrienes, and coupled to intracellular Ca2+ mobilization and inhibition of cAMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the hemagglutinin-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1, or Chinese hamster ovary (CHO) cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cAMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cAMP accumulation in C6 and CHO cells expressing the P2Y14 receptor. Likewise, none of these compounds promoted accumulation of inositol phosphates in COS-7 or human embryonic kidney 293 cells transiently transfected with GPR17 alone or cotransfected with Gαq/i5, which links Gi-coupled receptors to the Gq-regulated phospholipase C (PLC) signaling pathway, or PLCε, which is activated by the Gα12/13 signaling pathway. Moreover, none of these compounds promoted internalization of GPR17 in 1321N1-GPR17 cells. Consistent with previous reports, coexpression experiments of GPR17 with cysteinyl leukotriene receptor 1 (CysLTR1) suggested that GPR17 acts as a negative regulator of CysLTR1. Taken together, these data suggest that UDP, UDP-glucose, UDP-galactose, and LTC4 are not the cognate ligands of GPR17.
Journal of Biological Chemistry | 2005
Ai Dong Qi; Samuel C. Wolff; Robert A. Nicholas
P2Y2 and P2Y4 receptors, which have 52% sequence identity, are both expressed at the apical membrane of Madin-Darby canine kidney cells, but the locations of their apical targeting signals are distinctly different. The targeting signal of the P2Y2 receptor is located between the N terminus and 7TM, whereas that of the P2Y4 receptor is present in its C-terminal tail. To identify the apical targeting signal in the P2Y2 receptor, regions of the P2Y2 receptor were progressively substituted with the corresponding regions of the P2Y4 receptor lacking its targeting signal. Characterization of these chimeras and subsequent mutational analysis revealed that four amino acids (Arg95, Gly96, Asp97, and Leu108) in the first extracellular loop play a major role in apical targeting of the P2Y2 receptor. Mutation of RGD to RGE had no effect on P2Y2 receptor targeting, indicating that receptor-integrin interactions are not involved in apical targeting. P2Y2 receptor mutants were localized in a similar manner in Caco-2 colon epithelial cells. This is the first identification of an extracellular protein-based targeting signal in a seven-transmembrane receptor.
Purinergic Signalling | 2004
Ai Dong Qi; T. Kendall Harden; Robert A. Nicholas
The orphan receptor GPR80 (also called GPR99) was recently reported to be the P2Y15 receptor activated by AMP and adenosine and coupled to increases in cyclic AMP accumulation and intracellular Ca2+ mobilization (Inbe et al. J Biol Chem 2004; 279: 19790–9[12]). However, the cell line (HEK293) used to carry out those studies endogenously expresses A2A and A2B adenosine receptors as well as multiple P2Y receptors, which complicates the analysis of a potential P2Y receptor. To determine unambiguously whether GPR80 is a P2Y receptor subtype, HA-tagged GPR80 was either stably expressed in CHO cells or transiently expressed in COS-7 and HEK293 cells, and cell surface expression was verified by radioimmunoassay (RIA). COS-7 cells overexpressing GPR80 showed a consistent twofold increase in basal inositol phosphate accumulation. However, neither adenosine nor AMP was capable of promoting accumulation of either cyclic AMP or inositol phosphates in any of the three GPR80-expressing cells. A recent paper (He et al. Nature 2004; 429: 188–93 [15]) reported that GPR80 is a Gq-coupled receptor activated by the citric acid cycle intermediate, α-ketoglutarate. Consistent with this report, α-ketoglutarate promoted inositol phosphate accumulation in CHO and HEK293 cells expressing GPR80, and pretreatment of GPR80-expressing COS-7 cells with glutamate dehydrogenase, which converts α-ketoglutarate to glutamate, decreased basal levels of inositol phosphates. Taken together, these data demonstrate that GPR80 is not activated by adenosine, AMP or other nucleotides, but instead is activated by α-ketoglutarate. Therefore, GPR80 is not a new member of the P2Y receptor family.
Journal of Cell Science | 2010
Samuel C. Wolff; Ai Dong Qi; T. Kendall Harden; Robert A. Nicholas
The P2Y1 receptor is localized to the basolateral membrane of polarized Madin-Darby canine kidney (MDCK) cells. In the present study, we identified a 25-residue region within the C-terminal tail (C-tail) of the P2Y1 receptor that directs basolateral sorting. Deletion of this sorting signal caused redirection of the receptor to the apical membrane, indicating that the region from the N-terminus to transmembrane domain 7 (TM7) contains an apical-sorting signal that is overridden by a dominant basolateral signal in the C-tail. Location of the signal relative to TM7 is crucial, because increasing its distance from the end of TM7 resulted in loss of basolateral sorting. The basolateral-sorting signal does not use any previously established basolateral-sorting motifs, i.e. tyrosine-containing or di-hydrophobic motifs, for function, and it is functional even when inverted or when its amino acids are scrambled, indicating that the signal is sequence independent. Mutagenesis of different classes of amino acids within the signal identified charged residues (five basic and four acidic amino acids in 25 residues) as crucial determinants for sorting function, with amidated amino acids having a lesser role. Mutational analyses revealed that whereas charge balance (+1 overall) of the signal is unimportant, the total number of charged residues (nine), either positive or negative, is crucial for basolateral targeting. These data define a new class of targeting signal that relies on total charge and might provide a common mechanism for polarized trafficking of epithelial proteins.
Journal of Biological Chemistry | 2008
Mirko Magnone; Giovanna Basile; Debora Bruzzese; Lucrezia Guida; Maria Grazia Signorello; Madhu Parakkottil Chothi; Santina Bruzzone; Enrico Millo; Ai Dong Qi; Robert A. Nicholas; Matthias U. Kassack; Giuliana Leoncini; Elena Zocchi
Diadenosine 5′,5‴-P1,P2-diphosphate (Ap2A) is one of the adenylic dinucleotides stored in platelet granules. Along with proaggregant ADP, it is released upon platelet activation and is known to stimulate myocyte proliferation. We have previously demonstrated synthesis of Ap2A and of two isomers thereof, called P18 and P24, from their high pressure liquid chromatography retention time, by the ADP-ribosyl cyclase CD38 in mammalian cells. Here we show that Ap2A and its isomers are present in resting human platelets and are released during thrombin-induced platelet activation. The three adenylic dinucleotides were identified by high pressure liquid chromatography through a comparison with the retention times and the absorption spectra of purified standards. Ap2A, P18, and P24 had no direct effect on platelet aggregation, but they inhibited platelet aggregation induced by physiological agonists (thrombin, ADP, and collagen), with mean IC50 values ranging between 5 and 15 μm. Moreover, the three dinucleotides did not modify the intracellular calcium concentration in resting platelets, whereas they significantly reduced the thrombin-induced intracellular calcium increase. Through binding to the purinergic receptor P2Y11, exogenously applied Ap2A, P18, and P24 increased the intracellular cAMP concentration and stimulated platelet production of nitric oxide, the most important endogenous antiaggregant. The presence of Ap2A, P18, and P24 in resting platelets and their release during thrombin-induced platelet activation at concentrations equal to or higher than the respective IC50 value on platelet aggregation suggest a role of these dinucleotides as endogenous negative modulators of aggregation.
American Journal of Physiology-cell Physiology | 2013
D. Ross Dubose; Samuel C. Wolff; Ai Dong Qi; Izabela Naruszewicz; Robert A. Nicholas
The P2Y(4) receptor is selectively targeted to the apical membrane in polarized epithelial cell lines and has been shown to play a key role in intestinal chloride secretion. In this study, we delimit a 23 amino acid sequence within the P2Y(4) receptor C-tail that directs its apical targeting. Using a mutagenesis approach, we found that four hydrophobic residues near the COOH-terminal end of the signal are necessary for apical sorting, whereas two basic residues near the NH(2)-terminal end of the signal are involved to a lesser extent. Interestingly, mutation of the key hydrophobic residues results in a basolateral enrichment of the receptor construct, suggesting that the apical targeting sequence may prevent insertion or disrupt stability of the receptor at the basolateral membrane. The signal is not sequence specific, as an inversion of the 23 amino acid sequence does not disrupt apical targeting. We also show that the apical targeting sequence is an autonomous signal and is capable of redistributing the normally basolateral P2Y(12) receptor, suggesting that the apical signal is dominant over the basolateral signal in the main body of the P2Y(12) receptor. The targeting sequence is unique to the P2Y(4) receptor, and sequence alignments of the COOH-terminal tail of mammalian orthologs reveal that the hydrophobic residues in the targeting signal are highly conserved. These data define the novel apical sorting signal of the P2Y(4) receptor, which may represent a common mechanism for trafficking of epithelial transmembrane proteins.
British Journal of Pharmacology | 2011
Ai Dong Qi; Dayle Houston-Cohen; Isabella Naruszewicz; T. Kendall Harden; Robert A. Nicholas
BACKGROUND AND PURPOSE The P2Y1 receptor promotes chloride secretion in epithelial cells, a process critical for regulation of extracellular ion and fluid levels. Here we have examined the role of phosphorylation in agonist‐induced internalization of P2Y1 receptors.
Molecular Pharmacology | 2000
Charles Kennedy; Ai Dong Qi; Christopher L. Herold; T. Kendall Harden; Robert A. Nicholas
American Journal of Physiology-cell Physiology | 2005
Samuel C. Wolff; Ai Dong Qi; T. Kendall Harden; Robert A. Nicholas