Ai-Jun Liu
Second Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ai-Jun Liu.
Cell Research | 2013
Jin-Min Guo; Ai-Jun Liu; Pu Zang; Wen-Zhe Dong; Li-ping Ying; Wei-wei Wang; Pu Xu; Xu-Rui Song; Jun Cai; She-Qing Zhang; Jun-Li Duan; Jawahar L. Mehta; Ding-Feng Su
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that metabolizes ethanol and toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE). Using an unbiased proteomic search, we identified ALDH2 deficiency in stroke-prone spontaneously hypertensive rats (SHR-SP) as compared with spontaneously hypertensive rats (SHR). We concluded the causative role of ALDH2 deficiency in neuronal injury as overexpression or activation of ALDH2 conferred neuroprotection by clearing 4-HNE in in vitro studies. Further, ALDH2-knockdown rats revealed the absence of neuroprotective effects of PKCε. Moderate ethanol administration that is known to exert protection against stroke was shown to enhance the detoxification of 4-HNE, and to protect against ischemic cerebral injury through the PKCε-ALDH2 pathway. In SHR-SP, serum 4-HNE level was persistently elevated and correlated inversely with the lifespan. The role of 4-HNE in stroke in humans was also suggested by persistent elevation of its plasma levels for at least 6 months after stroke. Lastly, we observed that 21 of 1 242 subjects followed for 8 years who developed stroke had higher initial plasma 4-HNE levels than those who did not develop stroke. These findings suggest that activation of the ALDH2 pathway may serve as a useful index in the identification of stroke-prone subjects, and the ALDH2 pathway may be a potential target of therapeutic intervention in stroke.
CNS Neuroscience & Therapeutics | 2011
Xiu-Hua Zhang; Hong Lei; Ai-Jun Liu; Ying‐Xin Zou; Fu-Ming Shen; Ding-Feng Su
Aims: To examine the role of increased oxidative stress in the pathogenesis of cerebral infarction in stroke in stroke‐prone spontaneously hypertensive rats (SHR‐SP). Methods: The differentially expressed brain protein profile was examined in spontaneously hypertensive rats (SHR) (control group) and SHR‐SP using two‐dimensional fluorescent difference gel electrophoresis (2D‐DIGE). In addition, oxidative stress indicators including total antioxidation capacity (TAC), glutathione peroxidase (GPx) activity, and maleic dialdehyde (MDA) were also measured. Lastly, SHR‐SP were randomly divided into untreated and treated (vitamins C (200 mg/kg/day) and E (100 mg/kg/day)) groups. After treatment for 4 weeks, half of the animals were sacrificed for detection of TAC, GPx, and MDA. The remaining rats underwent middle cerebral artery occlusion (MCAO) and the infarct areas were measured. Results: Compared with SHR, the infarct area of SHR‐SP was larger (P < 0.01), and the antioxidative proteins including glutathione S‐transferase (GST) Pi2 and GST A5 were lower; TAC and GPx activities were decreased and MDA levels. Treatment with vitamins C and E decreased MDA, and increased TAC and GPx activity significantly in SHR‐SP, while also decreasing the infarct area (P < 0.01). Conclusions: Our findings indicate that oxidative stress plays an important role in the pathogenesis of cerebral ischemia.
Acta Pharmacologica Sinica | 2010
Jin-Min Guo; Ai-Jun Liu; Ding-Feng Su
AbstractStroke is the second most common cause of death and the most common cause of disability in developed countries. Stroke is a multi-factorial disease caused by a combination of environmental and genetic factors. Numerous epidemiologic studies have documented a significant genetic component in the occurrence of strokes. Genes encoding products involved in lipid metabolism, thrombosis, and inflammation are believed to be potential genetic factors for stroke. Although a large group of candidate genes have been studied, most of the epidemiological results are conflicting. Studies of stroke as a monogenic disease have made huge progress, and animal models serve as an indispensable tool to dissect the complex genetics of stroke. In the present review, we provide insight into the role of in vivo stroke models for the study of stroke genetics.
CNS Neuroscience & Therapeutics | 2012
Ai-Jun Liu; Pu Zang; Jin-Min Guo; Wei Wang; Wen-Zhe Dong; Wei Guo; Zhi-Gang Xiong; Wei-Zhong Wang; Ding-Feng Su
Decreased baroreflex sensitivity is associated with poor outcome in many cardiovascular diseases including stroke, but the molecular mechanism underlying this relationship is unclear. This work was designed to test the hypothesis that acetylcholine (ACh) and α7 nicotinic ACh receptor (α7nAChR) mediate the protection of arterial baroreflex against stroke.
European Heart Journal | 2013
Jian-Guang Yu; Shu-Wei Song; He Shu; Sai-Jun Fan; Ai-Jun Liu; Chong Liu; Wei Guo; Jin-Min Guo; Chao-Yu Miao; Ding-Feng Su
AIMS Angiogenesis is critical for re-establishing blood supply to ischaemic myocardium after myocardial infarction (MI). Human studies have associated arterial baroreflex (ABR) deficiency with higher rate of sudden death after MI. The present work was designed to examine whether ABR deficiency affects angiogenesis in MI rats. METHODS AND RESULTS Baroreflex sensitivity (BRS) was determined in conscious rats at 1 month after occlusion of the left anterior descending coronary artery. The survival time was significantly shorter in Sprague-Dawley rats with BRS <0.60 ms/mmHg vs. those with BRS ≥0.60 ms/mmHg. Sinoaortic denervation destroyed ABR, and decreased capillary density, regional blood flow and vascular endothelial growth factor (VEGF) concentration after MI. Ketanserin (0.6 mg/kg/day) enhanced BRS, and increased capillary density, regional blood flow, and VEGF. Sinoaortic denervation also reduced the expression of vesicular acetylcholine (ACh) transporter and α7-nicotinic ACh receptor (α7-nAChR). Angiogenesis after MI was significantly attenuated in α7-nAChR knockout mice. In contrast, increase in endogenous ACh with cholinesterase inhibitor pyridostigmine (30 mg/kg/day) increased angiogenesis after MI. In cultured cardiac microvascular endothelial cells, ACh stimulated the expression of VEGF, phosphorylation of VEGF receptor 2, and tube formation in a manner dependent upon α7-nAChR. CONCLUSION Our results demonstrated that ABR deficiency could attenuate angiogenesis in ischaemic myocardium. These findings provide further mechanistic basis for enhancing baroreflex function in the treatment of MI.
Life Sciences | 2008
Ai-Jun Liu; Gang Ling; Jian Wu; Fu-Ming Shen; Di-Song Wang; Li-Li Lin; Jian-Guo Liu; Ding-Feng Su
AIMS To clarify whether arterial baroreflex function is an important determinant of acute cerebral ischemia in rats. MAIN METHODS Three animal models were used in this study. In the first, saponin conjugated with substance P (SP-SAP) was injected into the nucleus tractus solitarii (NTS) of Sprague-Dawley (SD) rats to block the central baroreflex arc. In the second model, sinoaortic denervation (SAD) was performed to destroy the peripheral baroreflex arc in SD rats. In the third model, SD rats were divided into two groups according to their naturally occurring BRS values. After determining hemodynamic indexes and baroreflex sensitivity (BRS), we subjected the animals to middle cerebral artery (MCA) occlusion. Levels of interleukin (IL)-1beta and IL-6 were detected both in SAD/sham operation groups and low/high BRS groups. KEY FINDINGS In all three animal models, baroreflex dysfunction significantly increased the infarct volume and weight. The levels of inflammatory factors were markedly elevated in SAD and low BRS groups. SIGNIFICANCE These results demonstrate that the function of arterial baroreflex is an important determinant of acute cerebral ischemia in rats with MCA occlusion. Inflammation might be an important mechanism for the arterial baroreflex dysfunction-induced increase in brain damage in rats with MCA occlusion.
CNS Neuroscience & Therapeutics | 2012
Xiu-Juan Ma; Jin-Wei Cheng; Jing Zhang; Ai-Jun Liu; Wei Liu; Wei Guo; Fu-Ming Shen; Guo-Cai Lu
To determine whether E‐selectin deficiency can attenuate brain ischemia in a mouse model of focal cerebral ischemia.
Journal of Cerebral Blood Flow and Metabolism | 2013
Ai-Jun Liu; Jin-Min Guo; Wei Liu; Feng-Yun Su; Qiwei Zhai; Jawahar L. Mehta; Wei-Zhong Wang; Ding-Feng Su
Dietary restriction (DR) protects against neuronal dysfunction and degeneration, and reduces the risk of ischemic stroke. This study examined the role of silent information regulator T1 (SIRT1) and arterial baroreflex in the beneficial effects of DR against stroke, using two distinct stroke models: stroke-prone spontaneously hypertensive rats (SP-SHRs) and Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Sirt1 knockout (KO) mice were used to examine the involvement of sirt1. Sinoaortic denervation was used to inactivate arterial baroreflex. Dietary restriction was defined as 40% reduction of dietary intake. Briefly, DR prolonged the life span of SP-SHRs and reduced the infarct size induced by MCAO. Dietary restriction also improved the function arterial baroreflex, decreased the release of proinflammatory cytokines, and reduced end-organ damage. The beneficial effect of DR on stroke was markedly attenuated by blunting arterial baroreflex. Lastly, the infarct area in sirt1 KO mice was significantly larger than in the wild-type mice. However, the beneficial effect of DR against ischemic injury was still apparent in sirt1 KO mice. Accordingly, arterial baroreflex, but not sirt1, is important in the protective effect of DR against stroke.
Frontiers in Pharmacology | 2010
Shu-Wei Song; Ai-Jun Liu; Chong Bai; Bei-Lin Su; Xiu-Juan Ma; Fu-Ming Shen; Jun-Li Duan; Ding-Feng Su
Blood pressure reduction is an important and effective strategy in stroke prevention in hypertensives. Recently, we found that baroreflex restoration was also crucial in stroke prevention. The present work was designed to test the hypothesis that a combination of blood pressure reduction and baroreflex restoration may be a new strategy for stroke prevention. In Experiment 1, the effects of ketanserin (0.3, 1, 3, 10 mg/kg), amlodipine (0.3, 1, 2, 3 mg/kg) and their combination (1 + 0.3, 1 + 1, 1 + 2, 1 + 3 mg/kg) on blood pressure and baroreflex sensitivity (BRS) of stroke-prone spontaneously hypertensive rats (SHR-SP) were determined under conscious state. It was found that both amlodipine and ketanserin decreased blood pressure dose-dependently. Ketanserin enfanced BRS from a very small dose but amlodipine enfanced BRS only at largest dose used. At the dose of 1 + 2 mg/kg (ketanserin + amlodipine), the combination possessed the largest synergism on blood pressure reduction. In Experiments 2 and 3, SHR-SP and two-kidney, two-clip (2K2C) renovascular hypertensive rats received life-long treatments with ketanserin (1 mg/kg) and amlodipine (2 mg/kg) or their combination (0.5 + 1, 1 + 2, 2 + 4 mg/kg). The survival time was recorded and the brain lesion was examined. It was found that all kinds of treatments prolonged the survival time of SHR-SP and 2K2C rats. The combination possessed a significantly better effect on stroke prevention than mono-therapies. In conclusion, combination of blood pressure reduction and baroreflex restoration may be a new strategy for the prevention of stroke in hypertension.
Clinical and Experimental Pharmacology and Physiology | 2010
Ai-Jun Liu; Jin-Min Guo; Weiliang Xia; Ding-Feng Su
1. Stroke is a major cause of disability and death worldwide. It is preferable to prevent stroke rather than to treat it and, for the prevention of stroke, all risk factors relating to stroke need to be understood. The present paper reviews potential new strategies for the prevention of stroke based on findings of new risk factors, as well as classical risk factors.