Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ai g Lin is active.

Publication


Featured researches published by Ai g Lin.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex.

Ai Ling Lin; Peter T. Fox; Jean Hardies; Timothy Q. Duong; Jia-Hong Gao

The purpose of this study was to investigate activation-induced hypermetabolism and hyperemia by using a multifrequency (4, 8, and 16 Hz) reversing-checkerboard visual stimulation paradigm. Specifically, we sought to (i) quantify the relative contributions of the oxidative and nonoxidative metabolic pathways in meeting the increased energy demands [i.e., ATP production (JATP)] of task-induced neuronal activation and (ii) determine whether task-induced cerebral blood flow (CBF) augmentation was driven by oxidative or nonoxidative metabolic pathways. Focal increases in CBF, cerebral metabolic rate of oxygen (CMRO2; i.e., index of aerobic metabolism), and lactate production (JLac; i.e., index of anaerobic metabolism) were measured by using physiologically quantitative MRI and spectroscopy methods. Task-induced increases in JATP were small (12.2–16.7%) at all stimulation frequencies and were generated by aerobic metabolism (approximately 98%), with %ΔJATP being linearly correlated with the percentage change in CMRO2 (r = 1.00, P < 0.001). In contrast, task-induced increases in CBF were large (51.7–65.1%) and negatively correlated with the percentage change in CMRO2 (r = −0.64, P = 0.024), but positively correlated with %ΔJLac (r = 0.91, P < 0.001). These results indicate that (i) the energy demand of task-induced brain activation is small (approximately 15%) relative to the hyperemic response (approximately 60%), (ii) this energy demand is met through oxidative metabolism, and (iii) the CBF response is mediated by factors other than oxygen demand.


Journal of Cerebral Blood Flow and Metabolism | 2013

Chronic Rapamycin Restores Brain Vascular Integrity and Function Through NO Synthase Activation and Improves Memory in Symptomatic Mice Modeling Alzheimer’s Disease

Ai Ling Lin; Wei Zheng; Jonathan Halloran; Raquel Burbank; Stacy A. Hussong; Matthew J. Hart; Martin A. Javors; Yen Yu I Shih; Eric R. Muir; Rene Solano Fonseca; Randy Strong; Arlan Richardson; James D. Lechleiter; Peter T. Fox; Veronica Galvan

Vascular pathology is a major feature of Alzheimer’s disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias.


Magnetic Resonance in Medicine | 2008

Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF.

Ai Ling Lin; Peter T. Fox; Yihong Yang; Hanzhang Lu; Li Hai Tan; Jia-Hong Gao

The aim of this study was to investigate the various MRI biophysical models in the measurements of local cerebral metabolic rate of oxygen (CMRO2) and the corresponding relationship with cerebral blood flow (CBF) during brain activation. This aim was addressed by simultaneously measuring the relative changes in CBF, cerebral blood volume (CBV), and blood oxygen level dependent (BOLD) MRI signals in the human visual cortex during visual stimulation. A radial checkerboard delivered flash stimulation at five different frequencies. Two MRI models, the single‐compartment model (SCM) and the multicompartment model (MCM), were used to determine the relative changes in CMRO2 using three methods: [1] SCM with parameters identical to those used in a prior MRI study (M = 0.22; α = 0.38); [2] SCM with directly measured parameters (M from hypercapnia and α from measured δCBV and δCBF); and [3] MCM. The magnitude of relative changes in CMRO2 and the nonlinear relationship between CBF and CMRO2 obtained with Methods [2] and [3] were not in agreement with those obtained using Method [1]. However, the results of Methods [2] and [3] were aligned with positron emission tomography findings from the literature. Our results indicate that if appropriate parameters are used, the SCM and MCM models are equivalent for quantifying the values of CMRO2 and determining the flow‐metabolism relationship. Magn Reson Med 60:380–389, 2008.


PLOS ONE | 2012

Methylene blue as a cerebral metabolic and hemodynamic enhancer.

Ai Ling Lin; Ethan Poteet; Fang Du; Roy C. Gourav; Ran Liu; Yi Wen; Andrew Bresnen; Shiliang Huang; Peter T. Fox; Shao Hua Yang; Timothy Q. Duong

By restoring mitochondrial function, methylene blue (MB) is an effective neuroprotectant in many neurological disorders (e.g., Parkinson’s and Alzheimer’s diseases). MB has also been proposed as a brain metabolic enhancer because of its action on mitochondrial cytochrome c oxidase. We used in vitro and in vivo approaches to determine how MB affects brain metabolism and hemodynamics. For in vitro, we evaluated the effect of MB on brain mitochondrial function, oxygen consumption, and glucose uptake. For in vivo, we applied neuroimaging and intravenous measurements to determine MB’s effect on glucose uptake, cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2) under normoxic and hypoxic conditions in rats. MB significantly increases mitochondrial complex I–III activity in isolated mitochondria and enhances oxygen consumption and glucose uptake in HT-22 cells. Using positron emission tomography and magnetic resonance imaging (MRI), we observed significant increases in brain glucose uptake, CBF, and CMRO2 under both normoxic and hypoxic conditions. Further, MRI revealed that MB dramatically increased CBF in the hippocampus and in the cingulate, motor, and frontoparietal cortices, areas of the brain affected by Alzheimer’s and Parkinson’s diseases. Our results suggest that MB can enhance brain metabolism and hemodynamics, and multimetric neuroimaging systems offer a noninvasive, nondestructive way to evaluate treatment efficacy.


NeuroImage | 2009

Time-dependent correlation of cerebral blood flow with oxygen metabolism in activated human visual cortex as measured by fMRI

Ai Ling Lin; Peter T. Fox; Yihong Yang; Hanzhang Lu; Li Hai Tan; Jia-Hong Gao

The aim of this study was to investigate the relationship between relative cerebral blood flow (delta CBF) and relative cerebral metabolic rate of oxygen (delta CMRO(2)) during continuous visual stimulation (21 min at 8 Hz) with fMRI biophysical models by simultaneously measuring of BOLD, CBF and CBV fMRI signals. The delta CMRO(2) was determined by both a newly calibrated single-compartment model (SCM) and a multi-compartment model (MCM) and was in agreement between these two models (P>0.5). The duration-varying delta CBF and delta CMRO(2) showed a negative correlation with time (r=-0.97, P<0.001); i.e., delta CBF declines while delta CMRO(2) increases during continuous stimulation. This study also illustrated that without properly calibrating the critical parameters employed in the SCM, an incorrect and even an opposite appearance of the flow-metabolism relationship during prolonged visual stimulation (positively linear coupling) can result. The time-dependent negative correlation between flow and metabolism demonstrated in this fMRI study is consistent with a previous PET observation and further supports the view that the increase in CBF is driven by factors other than oxygen demand and the energy demands will eventually require increased aerobic metabolism as stimulation continues.


Journal of Cerebral Blood Flow and Metabolism | 2017

Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer’s disease:

Ai Ling Lin; Jordan B. Jahrling; Wei Zhang; Nicholas DeRosa; Vikas Bakshi; Peter Romero; Veronica Galvan; Arlan Richardson

Apolipoprotein E ɛ4 allele is a common susceptibility gene for late-onset Alzheimers disease. Brain vascular and metabolic deficits can occur in cognitively normal apolipoprotein E ɛ4 carriers decades before the onset of Alzheimers disease. The goal of this study was to determine whether early intervention using rapamycin could restore neurovascular and neurometabolic functions, and thus impede pathological progression of Alzheimers disease-like symptoms in pre-symptomatic Apolipoprotein E ɛ4 transgenic mice. Using in vivo, multimodal neuroimaging, we found that apolipoprotein E ɛ4 mice treated with rapamycin had restored cerebral blood flow, blood–brain barrier integrity and glucose metabolism, compared to age- and gender-matched wild-type controls. The preserved vasculature and metabolism were associated with amelioration of incipient learning deficits. We also found that rapamycin restored the levels of the proinflammatory cyclophilin A in vasculature, which may contribute to the preservation of cerebrovascular function in the apolipoprotein E ɛ4 transgenics. Our results show that rapamycin improves functional outcomes in this mouse model and may have potential as an effective intervention to block progression of vascular, metabolic and early cognitive deficits in human Apolipoprotein E ɛ4 carriers. As rapamycin is FDA-approved and neuroimaging is readily used in humans, the results of the present study may provide the basis for future Alzheimers disease intervention studies in human subjects.


Journal of Cerebral Blood Flow and Metabolism | 2017

Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals

Eseosa T. Ighodaro; Erin L. Abner; David W. Fardo; Ai Ling Lin; Yuriko Katsumata; Frederick A. Schmitt; Richard J. Kryscio; Gregory A. Jicha; Janna H. Neltner; Sarah E. Monsell; Walter A. Kukull; Debra K. Moser; Frank Appiah; Adam D. Bachstetter; Linda J. Van Eldik; Peter T. Nelson

Risk factors and cognitive sequelae of brain arteriolosclerosis pathology are not fully understood. To address this, we used multimodal data from the National Alzheimers Coordinating Center and Alzheimers Disease Neuroimaging Initiative data sets. Previous studies showed evidence of distinct neurodegenerative disease outcomes and clinical-pathological correlations in the “oldest-old” compared to younger cohorts. Therefore, using the National Alzheimers Coordinating Center data set, we analyzed clinical and neuropathological data from two groups according to ages at death: < 80 years (n = 1008) and ≥80 years (n = 1382). In both age groups, severe brain arteriolosclerosis was associated with worse performances on global cognition tests. Hypertension (but not diabetes) was a brain arteriolosclerosis risk factor in the younger group. In the ≥ 80 years age at death group, an ABCC9 gene variant (rs704180), previously associated with aging-related hippocampal sclerosis, was also associated with brain arteriolosclerosis. A post-hoc arterial spin labeling neuroimaging experiment indicated that ABCC9 genotype is associated with cerebral blood flow impairment; in a convenience sample from Alzheimers Disease Neuroimaging Initiative (n = 15, homozygous individuals), non-risk genotype carriers showed higher global cerebral blood flow compared to risk genotype carriers. We conclude that brain arteriolosclerosis is associated with altered cognitive status and a novel vascular genetic risk factor.


Journal of Cerebral Blood Flow and Metabolism | 2013

Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice

Ai Ling Lin; Daniel Pulliam; Sathyaseelan S. Deepa; Jonathan Halloran; Stacy A. Hussong; Raquel Burbank; Andrew Bresnen; Yuhong Liu; Natalia Podlutskaya; Anuradha Soundararajan; Eric R. Muir; Timothy Q. Duong; Alex Bokov; Carlo Viscomi; Massimo Zeviani; Arlan Richardson; Holly Van Remmen; Peter T. Fox; Veronica Galvan

Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders.


Journal of Cerebral Blood Flow and Metabolism | 2014

Caloric Restriction Impedes Age-Related Decline of Mitochondrial Function and Neuronal Activity

Ai Ling Lin; Daniel Coman; Lihong Jiang; Douglas L. Rothman; Fahmeed Hyder

Caloric restriction (CR) prolongs lifespan and retards many detrimental effects of aging, but its effect on brain mitochondrial function and neuronal activity—especially in healthy aging—remains unexplored. Here we measured rates of neuronal glucose oxidation and glutamate–glutamine neurotransmitter cycling in young control, old control (i.e., healthy aging), and old CR rats using in vivo nuclear magnetic resonance spectroscopy. We found that, compared with the young control, neuronal energy production and neurotransmission rates were significantly reduced in healthy aging, but were preserved in old CR rats. The results suggest that CR mitigated the age-related deceleration of brain physiology.


Neurology Research International | 2012

Multimodal MRI Neuroimaging Biomarkers for Cognitive Normal Adults, Amnestic Mild Cognitive Impairment, and Alzheimer's Disease

Ai Ling Lin; Angela R. Laird; Peter T. Fox; Jia-Hong Gao

Multimodal magnetic resonance imaging (MRI) techniques have been developed to noninvasively measure structural, metabolic, hemodynamic and functional changes of the brain. These advantages have made MRI an important tool to investigate neurodegenerative disorders, including diagnosis, disease progression monitoring, and treatment efficacy evaluation. This paper discusses recent findings of the multimodal MRI in the context of surrogate biomarkers for identifying the risk for AD in normal cognitive (NC) adults, brain anatomical and functional alterations in amnestic mild cognitive impairment (aMCI), and Alzheimers disease (AD) patients. Further developments of these techniques and the establishment of promising neuroimaging biomarkers will enhance our ability to diagnose aMCI and AD in their early stages and improve the assessment of therapeutic efficacy in these diseases in future clinical trials.

Collaboration


Dive into the Ai g Lin's collaboration.

Top Co-Authors

Avatar

Peter T. Fox

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Veronica Galvan

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacy A. Hussong

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Timothy Q. Duong

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel Burbank

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge