Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ai-Ping Zou is active.

Publication


Featured researches published by Ai-Ping Zou.


Hypertension | 2001

Production and Actions of Superoxide in the Renal Medulla

Ai-Ping Zou; Ningjun Li; Allen W. Cowley

The present study characterized the biochemical pathways responsible for superoxide (O2−·) production in different regions of the rat kidney and determined the role of O2−· in the control of renal medullary blood flow (MBF) and renal function. By use of dihydroethidium/DNA fluorescence spectrometry with microtiter plates, the production of O2−·was monitored when tissue homogenate from different kidney regions was incubated with substrates for the major O2−·-producing enzymes, such as NADH/NADPH oxidase, xanthine oxidase, and mitochondrial respiratory chain enzymes. The production of O2−· via NADH oxidase was greater (P <0.05) in the renal cortex and outer medulla (OM) than in the papilla. The mitochondrial enzyme activity for O2−·production was higher (P <0.05) in the OM than in the cortex and papilla. Compared with NADH oxidase and mitochondrial enzymes, xanthine oxidase and NADPH oxidase produced much less O2−· in the kidney under this condition. Overall, the renal OM exhibited the greatest enzyme activities for O2−·production. In anesthetized rats, renal medullary interstitial infusion of a superoxide dismutase inhibitor, diethyldithiocarbamate, markedly decreased renal MBF and sodium excretion. Diethyldithiocarbamate (5 mg/kg per minute by renal medullary interstitial infusion [RI]) reduced the renal medullary laser-Doppler flow signal from 0.6±0.04 to 0.4±0.03 V, a reduction of 33%, and both urine flow and sodium excretion decreased by 49%. In contrast, a membrane-permeable superoxide dismutase mimetic, 4-hydroxytetramethyl-piperidine-1-oxyl (TEMPOL, 30 &mgr;mol/kg per minute RI) increased MBF and sodium excretion by 34% and 69%, respectively. These effects of TEMPOL on renal MBF and sodium excretion were not altered by pretreatment with NG-nitro-l-arginine methyl ester (10 &mgr;g/kg per minute RI). We conclude that (1) renal medullary O2−·is primarily produced in the renal OM; (2) both NADH oxidase and mitochondrial enzymes are responsible for the O2−· production in this kidney region; and (3) O2−· exerts a tonic regulatory action on renal MBF.


Hypertension | 1997

Nitric Oxide in Renal Cortex and Medulla An In Vivo Microdialysis Study

Ai-Ping Zou; Allen W. Cowley

This study examined the production of nitric oxide (NO) in the renal cortex and medulla through the use of an in vivo microdialysis technique. Oxyhemoglobin (OxyHb) at a concentration of 3 mumol/L was perfused through the dialysis system to trap tissue NO. Methemoglobin (MetHb), which was formed by NO oxidation of OxyHb in the dialysate, was spectrophotometrically assayed at 401 nm. Because the oxidation of OxyHb to produce MetHb is stoichiometric with NO, the production of NO can be determined by the rate of MetHb formation. We found that NO concentration was significantly higher (P < .05) in the medulla (57.1 +/- 5.57 nmol/L, n = 10) than in the cortex (31.2 +/- 5.7 nmol/L, n = 9). The minimal detectable NO level of this assay is approximately 10 nmol/L. Intravenous infusion of L-arginine (3 mg/kg per minute) for 30 minutes produced a twofold to three fold increase in cortical and medullary NO; NG-nitro-L-arginine methyl ester (L-NAME) (10 micrograms/kg per minute) decreased NO by 33% in the renal cortex and by 46.5% in the renal medulla. We have also compared under the same conditions the degradation products of NO, nitrite, and nitrate in the renal cortex and medulla using in vivo microdialysis combined with microtiter plate colorimetry. Nitrite/nitrate concentration was significantly higher (P < .05) in the medulla (2.7 +/- 0.6 mumol/L, n = 4) than in the cortex (2.1 +/- 0.2 mumol/L, n = 4). Infusion of L-arginine increased cortical and medullary nitrite/nitrate by 65% and 39%, respectively. L-NAME reduced cortical and medullary nitrite/nitrate by 18% and 23%, respectively. The results indicate that the OxyHb-NO microdialysis trapping technique is a highly sensitive in situ method for detecting regional tissue NO concentration and changes in the NO synthase activity in the kidney. These studies have shown that NO concentration is higher in medullary tissue than in the cortex.


Hypertension | 1998

Protective Effect of Angiotensin II-Induced Increase in Nitric Oxide in the Renal Medullary Circulation

Ai-Ping Zou; Feng Wu; Allen W. Cowley

This study examined the effect of intravenous infusion of subpressor doses of angiotensin (Ang II) on renal medullary blood flow (MBF), medullary partial oxygen pressure (PO2), and nitric oxide (NO) concentration under normal conditions and during reduction of the medullary nitric oxide synthase (NOS) activity in anesthetized rats. With laser Doppler flowmetry and polarographic measurement of PO2 with microelectrodes, Ang II (5 ng/kg per minute) did not alter renal cortical and medullary blood flows or medullary PO2. N(omega)-nitro-L-arginine methyl ester (L-NAME) was infused into the renal medullary interstitial space at a dose of 1.4 microg/kg per minute, a dose that did not significantly alter basal levels of MBF or PO2. Intravenous infusion of Ang II at the same dose in the presence of L-NAME decreased MBF by 23% and medullary PO2 by 28%, but it had no effect on cortical blood flow or arterial blood pressure. An in vivo microdialysis-oxyhemoglobin NO trapping technique was used in other rats to determine tissue NO concentrations using the same protocol. Ang II infusion increased tissue NO concentrations by 85% in the renal cortex and 150% in the renal medulla. Renal medullary interstitial infusion of L-NAME (1.4 microg/kg per minute) reduced medullary NO concentrations and substantially blocked Ang II-induced increases in NO concentrations in the renal medulla, but not in the renal cortex. Tissue slices of the renal cortex and medulla were studied to determine the effects of Ang II and L-NAME on the nitrite/nitrate production. Ang II stimulated the nitrite/nitrate production predominately in the renal medulla, which was significantly attenuated by L-NAME. We conclude that small elevations of circulating Ang II levels increase medullary NO production and concentrations, which plays an important role in buffering the vasoconstrictor effects of this peptide and in maintaining a constancy of MBF.


Hypertension | 2000

Expression and Actions of Heme Oxygenase in the Renal Medulla of Rats

Ai-Ping Zou; Heather Billington; Na Su; Allen W. Cowley

Recent studies have shown that the heme oxygenase (HO) product, carbon monoxide (CO), induces vasodilation and that inhibition of HO produces a sustained hypertension in rats. Given the importance of renal medullary blood flow (MBF) in the long-term control of arterial blood pressure, we hypothesized that the HO/CO system may play an important role in maintaining the constancy of blood flow to the renal medulla, which in turn contributes to the antihypertensive effects of the renal medulla. To test this hypothesis, we first determined the expression of 2 isoforms of HO (HO-1 and HO-2) in the different kidney regions. By Northern blot analyses, the abundance of both isozyme mRNAs was found highest in the renal inner medulla and lowest in the renal cortex. The transcripts for HO-1 in the renal outer medulla and inner medulla were 2.5 and 3.7 times that expressed in the renal cortex and those for HO-2 in the outer medulla and inner medulla were 1.3 and 1.6 times that expressed in the renal cortex, respectively. Western blot analyses of both enzymes showed the same expression pattern in these kidney regions as the mRNAs. To determine the role that HO plays in the control of renal MBF, we examined the effect of the HO inhibitor zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) on cortical blood flow and MBF in anesthetized rats. ZnDPBG was given by renal medullary interstitial infusion, and cortical blood flow and MBF were measured by laser Doppler flowmetry. Renal medullary interstitial infusion of ZnDPBG at a dose of 60 nmol/kg per minute produced a 31% decrease in MBF over a period of 60 minutes as measured by laser Doppler flow signal (0.62+/-0.02 vs 0.43+/-0.04 V in control vs ZnDPBG). With the use of an in vivo microdialysis technique, ZnDPBG was found to significantly reduce renal medullary cGMP concentrations when infused into the renal medullary interstitial space. These results suggest that both HO-1 and HO-2 are highly expressed in the renal medulla, that HO and its products play an important role in maintaining the constancy of blood flow to the renal medulla, and that cGMP may mediate the vasodilator effect of HO products in the renal medullary circulation.


Hypertension | 1997

Regulation of Potassium Channels in Coronary Arterial Smooth Muscle by Endothelium-Derived Vasodilators

Pin-Lan Li; Ai-Ping Zou; William B. Campbell

Recent studies have suggested that coronary endothelial cells produce and release nitric oxide (NO), prostaglandin I2, and epoxyeicosatrienoic acids (EETs). These endothelium-derived vasodilators play an important role in the control of coronary vascular tone. However, the mechanism by which these endothelium-derived vasodilators cause relaxation of coronary arterial smooth muscle has yet to be determined. This study characterized and compared the effects of NO, prostaglandin I2, and 11,12-EET on the two main types of potassium channels in small bovine coronary arterial smooth muscle: the large conductance Ca(2+)-activated K+ channels (KCa) and 4-aminopyridine-sensitive delayed rectifier K+ channels (Kdrf). In cell-attached patches, nonoate, an NO donor, activated both KCa and Kdrf channels. The open probability of both KCa and Kdrf channels increased 10- to 25-fold when nonoate was added to the bath at concentrations of 10(-6) to 10(-4) mol/L. 11,12-EET (10(-8) to 10(-4) mol/L) also increased the activity of the KCa channels in a concentration-dependent manner, but it had no effect on the activity of the Kdrf channels, even in the highest concentration studied (10(-4) mol/L). In contrast to the effect of 11,12-EET, iloprost, a prostaglandin I2 analogue (10(-6) to 10(-4) mol/L), produced a concentration-dependent increase in the activity of Kdrf channels without affecting the KCa channels. In conclusion, all three endothelium-derived vasodilators act to open potassium channels; however, the channel types that they affect are different. NO activates both KCa and Kdrf channels; 11,12-EET activates only the KCa channels; and prostaglandin I2 activates only the Kdrf channels.


Hypertension | 1996

Role of 20-HETE in Elevating Loop Chloride Reabsorption in Dahl SS/Jr Rats

Ai-Ping Zou; Heather A. Drummond; Richard J. Roman

In vivo tubular perfusion experiments were performed in normotensive Dahl salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) rats maintained from birth on a low salt (0.4% NaCl) diet to examine the role of 20-HETE in elevating loop Cl- transport in SS/Jr rats. Chloride reabsorption in the loop of Henle was significantly greater in SS/Jr than in SR/Jr rats (77 +/- 2% versus 57 +/- 3% of the perfused Cl- load). When the renal metabolism of arachidonic acid by P450 was blocked by the addition of 17-octadecynoic acid (10 micromol/L) to the perfusate, loop Cl- transport increased in SR/Jr rats to 70 +/- 2% of the delivered Cl- load, but it had no effect in SS/Jr rats. Conversely, addition of 20-HETE (10 micromol/L) to the perfusate lowered loop Cl- transport in S rats to 60 +/- 2% of perfused Cl- load, but it had no effect in SR/Jr rats. Addition of another endogenously formed HETE to the perfusate, 15-HETE (20 micromol/L), had no effect on Cl- reabsorption in the loop of Henle of SS/Jr rats. These findings indicate that endogenously produced P450 metabolites of arachidonic acid regulate Cl- transport in the loop of Henle of the rat in vivo and support the view that a diminished production of 20-HETE in the outer medulla of SS/Jr rats contributes to the elevation in loop Cl- transport and the resetting of the pressure-natriuresis relation in these animals.


Circulation | 2002

Effect of Hyperhomocysteinemia on Plasma or Tissue Adenosine Levels and Renal Function

Ya-Fei Chen; Pin-Lan Li; Ai-Ping Zou

Background—Hyperhomocysteinemia (hHcys) is considered an independent risk factor of cardiovascular diseases. Recent studies in our laboratory have shown that hHcys produced glomerular dysfunction and sclerosis independently of hypertension. However, the mechanism mediating these pathogenic effects of homocysteine (Hcys) is poorly understood. Because Hcys and adenosine (Ado) are simultaneously produced via hydrolysis of S-adenosylhomocysteine (SAH), we hypothesized that hHcys may produce its pathogenic effects by decrease in plasma or tissue Ado concentrations. Methods and Results—l-Hcys (1.5 &mgr;mol/min per kilogram) was infused intravenously for 60 minutes to produce acute hHcys in Sprague-Dawley rats. Plasma Hcys levels increased from 6.7±0.4 to 14.7±0.5 &mgr;mol/L, but Ado decreased from 141.7±15.1 to 52.4±6.8 nmol/L in these rats with acute hHcys. This hHcys-induced reduction of Ado was also observed in the kidney dialysate. In rats with chronic hHcys, plasma Ado levels were also significantly decreased. By kinetic analysis of the enzyme activities, decrease in renal Ado levels in hHcys was shown to be associated with inhibition of SAH hydrolase but not 5′-nucleotidase. Functionally, intravenous infusion of Hcys was found to decrease renal blood flow, glomerular filtration rate, and sodium and water excretion, which could be blocked by the Ado receptor antagonist 8-SPT. Conclusions—These results strongly suggest that hHcys decreases plasma and tissue Ado concentrations associated with inhibition of SAH hydrolase. Decrease in plasma and tissue Ado may be an important mechanism mediating the pathogenic effects of Hcys.


Basic Research in Cardiology | 2001

Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats.

David X. Zhang; Ryan M. Fryer; Anna K. Hsu; Ai-Ping Zou; Garrett J. Gross; William B. Campbell; Pin-Lan Li

Abstract Ceramide has been shown to be a key signaling molecule involved in the apoptotic effect of tumor necrosis factor α (TNF-α) and other cytokines. Given the importance of cytokines such as TNF-α in myocardial ischemia-reperfusion injury, we hypothesize that ceramide is increased during ischemia or reperfusion, and that the activity of enzymes responsible for its production or breakdown should be increased and/or decreased, respectively. Therefore, in the present study, we characterized the enzymatic activities responsible for ceramide production and metabolism in the myocardium of rats, and determined the contribution of these enzymes to altered ceramide levels during myocardial ischemia and reperfusion. The basal ceramide concentration in the myocardium of rats was 34.0 pmol/mg tissue. As determined by the conversion of 14C-sphingomyelin into ceramide and 14C-choline phosphate, both neutral (N-) and acidic (A-) SMase were detected in the myocardium, with a conversion rate of 0.09 ± 0.008 and 0.32 ± 0.05 nmol/min per mg protein, respectively. The activity of A-SMase (78 % of total cellular activity) was significantly higher in microsomes than in cytosol, while the activity of N-SMase was similar in both fractions. Ceramidase, a ceramide-metabolizing enzyme, was also detected in the myocardium of rats. It metabolized ceramide into sphingosine at a rate of 9.94 ± 0.42 pmol/min per mg protein. In anesthetized rats, 30 min of ischemia had no apparent effect on ceramide concentrations in the myocardium, while 30 min of ischemia followed by 3 h of reperfusion resulted in a significant increase in ceramide by 48 %. The activities of both N- and A-SMase were reduced by 44 % and 32 %, respectively, in the myocardium subjected to ischemia followed by reperfusion, but unaltered in the ischemic myocardium. It was also found that myocardial ischemia followed by reperfusion produced a marked inhibition of ceramidase (by 29 %). These results demonstrate that the myocardium of rats expresses N- and A-SMase and ceramidase, which contribute to the production and metabolism of ceramide, respectively. Tissue ceramide concentrations increased in reperfused myocardium. These increases in ceramide were not associated with enhanced SMase activity, but rather with reduced ceramidase activity.


Journal of Vascular Research | 2003

Cyclic ADP-Ribose Contributes to Contraction and Ca2+ Release by M1 Muscarinic Receptor Activation in Coronary Arterial Smooth Muscle

Zhi-Dong Ge; David X. Zhang; Ya-Fei Chen; Fu-Xian Yi; Ai-Ping Zou; William B. Campbell; Pin-Lan Li

The present study determined the role of cyclic ADP-ribose (cADPR) in mediating vasoconstriction and Ca2+ release in response to the activation of muscarinic receptors. Endothelium-denuded small bovine coronary arteries were microperfused under transmural pressure of 60 mm Hg. Both acetylcholine (ACh; 1 nmol/L to 1 µmol/L) and oxotremorine (OXO; 2.5–80 µmol/L) produced a concentration-dependent contraction. The vasoconstrictor responses to both ACh and OXO were significantly attenuated by nicotinamide (Nicot; an ADP-ribosyl cyclase inhibitor), 8-bromo-cADPR (8-Br-cADPR; a cADPR antagonist) or ryanodine (Ry; an Ry receptor antagonist). Intracellular Ca2+ ([Ca2+]i) was determined by fluorescence spectrometry using fura-2 as a fluorescence indicator. OXO produced a rapid increase in [Ca2+]i in freshly isolated single coronary arterial smooth muscle cells (CASMCs) bathed with Ca2+-free Hanks’ solution. This OXO-induced rise in [Ca2+]i was significantly reduced by pirenzepine (PIR; an M1 receptor-specific blocker), Nicot, 8-Br-cADPR or Ry. The effects of OXO on the activity of ADP-ribosyl cyclase (cADPR synthase) were examined in cultured CASMCs by measuring the rate of cyclic GDP- ribose (cGDPR) formation from β-nicotinamide guanine dinucleotide. It was found that OXO produced a concentration-dependent increase in the production of cGDPR. The stimulatory effect of OXO on ADP-ribosyl cyclase was inhibited by both PIR and Nicot. These results suggest that the cADPR signaling pathway participates in the contraction of small coronary arterial smooth muscle and Ca2+ release induced by activation of M1 muscarinic receptors.


Hypertension | 2000

Inhibition of cADP-Ribose Formation Produces Vasodilation in Bovine Coronary Arteries

Jason Geiger; Ai-Ping Zou; William B. Campbell; Pin-Lan Li

cADP-ribose (cADPR) induces the release of Ca(2+) from the intracellular stores of coronary artery smooth muscle cells. However, little is known about the role of cADPR-mediated intracellular Ca(2+) release in the control of vascular tone. The present study examined the effects of nicotinamide, a specific inhibitor of ADP-ribosylcyclase, on the vascular tone of bovine coronary arteries. A bovine coronary artery homogenate stimulated the conversion of nicotinamide guanine dinucleotide into cGDP-ribose, which is a measure of ADP-ribosylcyclase activity. Nicotinamide significantly inhibited the formation of cGDP-ribose in a concentration-dependent manner: at a concentration of 10 mmol/L, it reduced the conversion rate from 3.34+/-0.11 nmol. min(-1). mg(-1) of protein in control cells to 1.42+/-0.11 nmol. min(-1). mg(-1) of protein in treated cells, a 58% reduction. In U46619-precontracted coronary artery rings, nicotinamide produced concentration-dependent relaxation. Complete relaxation with nicotinamide occurred at a dose of 8 mmol/L; the median inhibitory concentration (IC(50)) was 1.7 mmol/L. In the presence of a cell membrane-permeant cADPR antagonist, 8-bromo-cADPR, nicotinamide-induced vasorelaxation was markedly attenuated. Pretreatment of the arterial rings with ryanodine (50 micromol/L) significantly blunted the vasorelaxation response to nicotinamide. However, iloprost- and adenosine-induced vasorelaxation was not altered by 8-bromo-cADPR. Moreover, nicotinamide significantly attenuated KCl- or Bay K8644-induced vasoconstriction by 60% and 70%, respectively. These results suggest that the inhibition of cADPR formation by nicotinamide produces vasorelaxation and blunts KCl- and Bay K8644-induced vasoconstriction in coronary arteries and that the cADPR-mediated Ca(2+) signaling pathway plays a role in the control of vascular tone in coronary circulation.

Collaboration


Dive into the Ai-Ping Zou's collaboration.

Top Co-Authors

Avatar

Pin-Lan Li

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Allen W. Cowley

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

William B. Campbell

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David X. Zhang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Andrew Y. Zhang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Fu-Xian Yi

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Ya-Fei Chen

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Richard J. Roman

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ningjun Li

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Eric G. Teggatz

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge