Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ai Yamamoto is active.

Publication


Featured researches published by Ai Yamamoto.


Cell | 2000

Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease.

Ai Yamamoto; José J. Lucas; René Hen

Neurodegenerative disorders like Huntingtons disease (HD) are characterized by progressive and putative irreversible clinical and neuropathological symptoms, including neuronal protein aggregates. Conditional transgenic models of neurodegenerative diseases therefore could be a powerful means to explore the relationship between mutant protein expression and progression of the disease. We have created a conditional model of HD by using the tet-regulatable system. Mice expressing a mutated huntingtin fragment demonstrate neuronal inclusions, characteristic neuropathology, and progressive motor dysfunction. Blockade of expression in symptomatic mice leads to a disappearance of inclusions and an amelioration of the behavioral phenotype. We thus demonstrate that a continuous influx of the mutant protein is required to maintain inclusions and symptoms, raising the possibility that HD may be reversible.


Journal of Cell Biology | 2007

Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease

Maria Filimonenko; Susanne Stuffers; Camilla Raiborg; Ai Yamamoto; Lene Malerød; Elizabeth M. C. Fisher; Adrian M. Isaacs; Andreas Brech; Harald Stenmark; Anne Simonsen

The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. We show here that autophagic degradation is inhibited in cells depleted of ESCRT subunits and in cells expressing CHMP2B mutants, leading to accumulation of protein aggregates containing ubiquitinated proteins, p62 and Alfy. Moreover, we find that functional MVBs are required for clearance of TDP-43 (identified as the major ubiquitinated protein in ALS and frontotemporal lobar degeneration with ubiquitin deposits), and of expanded polyglutamine aggregates associated with Huntingtons disease. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations.


Nature | 2013

Identification of a candidate therapeutic autophagy-inducing peptide

Sanae Shoji-Kawata; Rhea Sumpter; Matthew J Leveno; Grant R. Campbell; Zhongju Zou; Lisa N. Kinch; Angela D. Wilkins; Qihua Sun; Kathrin Pallauf; Donna A. MacDuff; Carlos Huerta; Herbert W. Virgin; J. Bernd Helms; Ruud Eerland; Sharon A. Tooze; Ramnik J. Xavier; Deborah J. Lenschow; Ai Yamamoto; David S. King; Olivier Lichtarge; Nick V. Grishin; Stephen A. Spector; Dora Kaloyanova; Beth Levine

The lysosomal degradation pathway of autophagy has a crucial role in defence against infection, neurodegenerative disorders, cancer and ageing. Accordingly, agents that induce autophagy may have broad therapeutic applications. One approach to developing such agents is to exploit autophagy manipulation strategies used by microbial virulence factors. Here we show that a peptide, Tat–beclin 1—derived from a region of the autophagy protein, beclin 1, which binds human immunodeficiency virus (HIV)-1 Nef—is a potent inducer of autophagy, and interacts with a newly identified negative regulator of autophagy, GAPR-1 (also called GLIPR2). Tat–beclin 1 decreases the accumulation of polyglutamine expansion protein aggregates and the replication of several pathogens (including HIV-1) in vitro, and reduces mortality in mice infected with chikungunya or West Nile virus. Thus, through the characterization of a domain of beclin 1 that interacts with HIV-1 Nef, we have developed an autophagy-inducing peptide that has potential efficacy in the treatment of human diseases.


Cell | 2009

Acetylation targets mutant huntingtin to autophagosomes for degradation.

Hyunkyung Jeong; Florian Then; Thomas J. Melia; Joseph R. Mazzulli; Libin Cui; Jeffrey N. Savas; Cindy Voisine; Paolo Paganetti; Naoko Tanese; Anne C. Hart; Ai Yamamoto; Dimitri Krainc

Huntingtons disease (HD) is an incurable neurodegenerative disease caused by neuronal accumulation of the mutant protein huntingtin. Improving clearance of the mutant protein is expected to prevent cellular dysfunction and neurodegeneration in HD. We report here that such clearance can be achieved by posttranslational modification of the mutant Huntingtin (Htt) by acetylation at lysine residue 444 (K444). Increased acetylation at K444 facilitates trafficking of mutant Htt into autophagosomes, significantly improves clearance of the mutant protein by macroautophagy, and reverses the toxic effects of mutant huntingtin in primary striatal and cortical neurons and in a transgenic C. elegans model of HD. In contrast, mutant Htt that is rendered resistant to acetylation dramatically accumulates and leads to neurodegeneration in cultured neurons and in mouse brain. These studies identify acetylation as a mechanism for removing accumulated protein in HD, and more broadly for actively targeting proteins for degradation by autophagy.


Neuron | 2014

Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits

Guomei Tang; Kathryn Gudsnuk; Sheng-Han Kuo; Marisa L. Cotrina; Gorazd Rosoklija; Alexander A. Sosunov; Mark S. Sonders; Ellen Kanter; Candace Castagna; Ai Yamamoto; Zhenyu Yue; Ottavio Arancio; Bradley S. Peterson; Frances A. Champagne; Andrew J. Dwork; James E. Goldman; David Sulzer

Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.


Molecular Cell | 2010

The Selective Macroautophagic Degradation of Aggregated Proteins Requires the PI3P-Binding Protein Alfy

Maria Filimonenko; Pauline Isakson; Kim D. Finley; Monique Anderson; Hyun Jeong; Thomas J. Melia; Bryan J. Bartlett; Katherine Myers; Hanne C.G. Birkeland; Trond Lamark; Dimitri Krainc; Andreas Brech; Harald Stenmark; Anne Simonsen; Ai Yamamoto

There is growing evidence that macroautophagic cargo is not limited to bulk cytosol in response to starvation and can occur selectively for substrates, including aggregated proteins. It remains unclear, however, whether starvation-induced and selective macroautophagy share identical adaptor molecules to capture their cargo. Here, we report that Alfy, a phosphatidylinositol 3-phosphate-binding protein, is central to the selective elimination of aggregated proteins. We report that the loss of Alfy inhibits the clearance of inclusions, with little to no effect on the starvation response. Alfy is recruited to intracellular inclusions and scaffolds a complex between p62(SQSTM1)-positive proteins and the autophagic effectors Atg5, Atg12, Atg16L, and LC3. Alfy overexpression leads to elimination of aggregates in an Atg5-dependent manner and, likewise, to protection in a neuronal and Drosophila model of polyglutamine toxicity. We propose that Alfy plays a key role in selective macroautophagy by bridging cargo to the molecular machinery that builds autophagosomes.


Nature Neuroscience | 2011

Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT

M. Laura Cremona; Heinrich J. G. Matthies; Kelvin Pau; Erica Bowton; Nicole Speed; Brandon J. Lute; Monique Anderson; Namita Sen; Sabrina D. Robertson; Roxanne A. Vaughan; Aurelio Galli; Jonathan A. Javitch; Ai Yamamoto

Plasmalemmal neurotransmitter transporters (NTTs) regulate the level of neurotransmitters, such as dopamine (DA) and glutamate, after their release at brain synapses. Stimuli including protein kinase C (PKC) activation can lead to the internalization of some NTTs and a reduction in neurotransmitter clearance capacity. We found that the protein Flotillin-1 (Flot1), also known as Reggie-2, was required for PKC-regulated internalization of members of two different NTT families, the DA transporter (DAT) and the glial glutamate transporter EAAT2, and we identified a conserved serine residue in Flot1 that is essential for transporter internalization. Further analysis revealed that Flot1 was also required to localize DAT within plasma membrane microdomains in stable cell lines, and was essential for amphetamine-induced reverse transport of DA in neurons but not for DA uptake. In sum, our findings provide evidence for a critical role of Flot1-enriched membrane microdomains in PKC-triggered DAT endocytosis and the actions of amphetamine.


Oncogene | 2010

Involvement of JNK in the regulation of autophagic cell death

Shigeomi Shimizu; Akimitsu Konishi; Yuya Nishida; Takeshi Mizuta; Hiroshi Nishina; Ai Yamamoto; Yoshihide Tsujimoto

Programmed cell death is a crucial process in the normal development and physiology of metazoans, and it can be divided into several categories that include type I death (apoptosis) and type II death (autophagic cell death). The Bcl-2 family proteins are well-characterized regulators of apoptosis, among which multidomain pro-apoptotic members (such as Bax and Bak) function as a mitochondrial gateway at which various apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double-knockout (DKO) mice are resistant to apoptosis, we have previously reported that these cells still die by autophagy in response to various death stimuli. In this study, we found that jun N-terminal kinase (JNK) was activated in etoposide- and staurosporine-treated, but not serum-starved, Bax/Bak DKO cells, and that autophagic cell death was suppressed by the addition of a JNK inhibitor and by a dominant-negative mutant of JNK. Studies with sek1−/−mkk7−/− cells revealed that disruption of JNK prevented the induction of autophagic cell death. Co-activation of JNK and autophagy induced autophagic cell death. Activation of JNK occurred downstream of the induction of autophagy, and was dependent on the autophagic process. These results indicate that JNK activation is crucial for the autophagic death of Bax/Bak DKO cells.


PLOS ONE | 2009

PINK1 Defect Causes Mitochondrial Dysfunction, Proteasomal Deficit and α-Synuclein Aggregation in Cell Culture Models of Parkinson's Disease

Wencheng Liu; Cristofol Vives-Bauza; Rebeca Acín-Pérez; Ai Yamamoto; Ying-Cai Tan; Yanping Li; Jordi Magrané; Mihaela Stavarache; Sebastian Shaffer; Simon Chang; Michael G. Kaplitt; Xin-Yun Huang; M. Flint Beal; Giovanni Manfredi; Chenjian Li

Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinsons disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased α-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and α-synclein aggregation.


Nature Cell Biology | 2014

Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3.

Sangeeta Nath; Julia Dancourt; Vladimir Shteyn; Gabriella Puente; Wendy M. Fong; Shanta Nag; Joerg Bewersdorf; Ai Yamamoto; Bruno Antonny; Thomas J. Melia

The components supporting autophagosome growth on the cup-like isolation membrane are likely to be different from those found on closed and maturing autophagosomes. The highly curved rim of the cup may serve as a functionally required surface for transiently associated components of the early acting autophagic machinery. Here we demonstrate that the E2-like enzyme, Atg3, facilitates LC3/GABARAP lipidation only on membranes exhibiting local lipid-packing defects. This activity requires an amino-terminal amphipathic helix similar to motifs found on proteins targeting highly curved intracellular membranes. By tuning the hydrophobicity of this motif, we can promote or inhibit lipidation in vitro and in rescue experiments in Atg3-knockout cells, implying a physiologic role for this stress detection. The need for extensive lipid-packing defects suggests that Atg3 is designed to work at highly curved membranes, perhaps including the limiting edge of the growing phagophore.

Collaboration


Dive into the Ai Yamamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge