Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aida M. Bertoli-Avella is active.

Publication


Featured researches published by Aida M. Bertoli-Avella.


Nature Genetics | 2011

Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis

Ingrid van de Laar; Rogier A. Oldenburg; Gerard Pals; Jolien W. Roos-Hesselink; Bianca M. de Graaf; Judith M.A. Verhagen; Yvonne M. Hoedemaekers; Rob Willemsen; Lies-Anne Severijnen; Hanka Venselaar; Gert Vriend; Peter M. T. Pattynama; Margriet J. Collee; Danielle Majoor-Krakauer; Don Poldermans; Ingrid M.E. Frohn-Mulder; Dimitra Micha; Janneke Timmermans; Yvonne Hilhorst-Hofstee; Sita M. A. Bierma-Zeinstra; Patrick J. Willems; Johan M. Kros; Edwin H. G. Oei; Ben A. Oostra; Marja W. Wessels; Aida M. Bertoli-Avella

Thoracic aortic aneurysms and dissections are a main feature of connective tissue disorders, such as Marfan syndrome and Loeys-Dietz syndrome. We delineated a new syndrome presenting with aneurysms, dissections and tortuosity throughout the arterial tree in association with mild craniofacial features and skeletal and cutaneous anomalies. In contrast with other aneurysm syndromes, most of these affected individuals presented with early-onset osteoarthritis. We mapped the genetic locus to chromosome 15q22.2–24.2 and show that the disease is caused by mutations in SMAD3. This gene encodes a member of the TGF-β pathway that is essential for TGF-β signal transmission. SMAD3 mutations lead to increased aortic expression of several key players in the TGF-β pathway, including SMAD3. Molecular diagnosis will allow early and reliable identification of cases and relatives at risk for major cardiovascular complications. Our findings endorse the TGF-β pathway as the primary pharmacological target for the development of new treatments for aortic aneurysms and osteoarthritis.


Circulation Research | 2011

Exome Sequencing Identifies SMAD3 Mutations as a Cause of Familial Thoracic Aortic Aneurysm and Dissection With Intracranial and Other Arterial Aneurysms

Ellen S. Regalado; Dong Chuan Guo; Carlos Villamizar; Nili Avidan; Dawna Gilchrist; Barbara McGillivray; Lorne A. Clarke; Francois P. Bernier; Regie Lyn P. Santos-Cortez; Suzanne M. Leal; Aida M. Bertoli-Avella; Jay Shendure; Mark J. Rieder; Deborah A. Nickerson; Dianna M. Milewicz

Rationale: Thoracic aortic aneurysms leading to acute aortic dissections (TAAD) can be inherited in families in an autosomal dominant manner. As part of the spectrum of clinical heterogeneity of familial TAAD, we recently described families with multiple members that had TAAD and intracranial aneurysms or TAAD and intracranial and abdominal aortic aneurysms inherited in an autosomal dominant manner. Objective: To identify the causative mutation in a large family with autosomal dominant inheritance of TAAD with intracranial and abdominal aortic aneurysms by performing exome sequencing of 2 distantly related individuals with TAAD and identifying shared rare variants. Methods and Results: A novel frame shift mutation, p. N218fs (c.652delA), was identified in the SMAD3 gene and segregated with the vascular diseases in this family with a logarithm of odds score of 2.52. Sequencing of 181 probands with familial TAAD identified 3 additional SMAD3 mutations in 4 families, p.R279K (c.836G>A), p.E239K (c.715G>A), and p.A112V (c.235C>T), resulting in a combined logarithm of odds score of 5.21. These 4 mutations were notably absent in 2300 control exomes. SMAD3 mutations were recently described in patients with aneurysms osteoarthritis syndrome and some of the features of this syndrome were identified in individuals in our cohort, but these features were notably absent in many SMAD3 mutation carriers. Conclusions: SMAD3 mutations are responsible for 2% of familial TAAD. Mutations are found in families with TAAD alone, along with families with TAAD, intracranial aneurysms, abdominal aortic and bilateral iliac aneurysms segregating in an autosomal dominant manner.


Journal of Medical Genetics | 2005

The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor

Stefano Goldwurm; A. Di Fonzo; Erik J. Simons; Christan F. Rohé; Michela Zini; Margherita Canesi; Silvana Tesei; Anna Zecchinelli; Angelo Antonini; Claudio Mariani; Nicoletta Meucci; Giorgio Sacilotto; Francesca Sironi; G Salani; Joaquim J. Ferreira; Hsin Fen Chien; Edito Fabrizio; Nicola Vanacore; A. Dalla Libera; Fabrizio Stocchi; C. Diroma; Paolo Lamberti; Cristina Sampaio; Giuseppe Meco; Egberto Reis Barbosa; Aida M. Bertoli-Avella; Guido J. Breedveld; Ben A. Oostra; Gianni Pezzoli; Vincenzo Bonifati

Background: Mutations in the gene Leucine-Rich Repeat Kinase 2 (LRRK2) were recently identified as the cause of PARK8 linked autosomal dominant Parkinson’s disease. Objective: To study recurrent LRRK2 mutations in a large sample of patients from Italy, including early (<50 years) and late onset familial and sporadic Parkinson’s disease. Results: Among 629 probands, 13 (2.1%) were heterozygous carriers of the G2019S mutation. The mutation frequency was higher among familial (5.1%, 9/177) than among sporadic probands (0.9%, 4/452) (p<0.002), and highest among probands with one affected parent (8.7%, 6/69) (p<0.001). There was no difference in the frequency of the G2019S mutation in probands with early v late onset disease. Among 600 probands, one heterozygous R1441C but no R1441G or Y1699C mutations were detected. None of the four mutations was found in Italian controls. Haplotype analysis in families from five countries suggested that the G2019S mutation originated from a single ancient founder. The G2019S mutation was associated with the classical Parkinson’s disease phenotype and a broad range of onset age (34 to 73 years). Conclusions: G2019S is the most common genetic determinant of Parkinson’s disease identified so far. It is especially frequent among cases with familial Parkinson’s disease of both early and late onset, but less common among sporadic cases. These findings have important implications for diagnosis and genetic counselling in Parkinson’s disease.


Journal of Medical Genetics | 2012

Phenotypic spectrum of the SMAD3-related aneurysms–osteoarthritis syndrome

Ingrid van de Laar; Denise van der Linde; Edwin H. G. Oei; P.K. Bos; Johannes H.J.M. Bessems; Sita M. A. Bierma-Zeinstra; Belle L. van Meer; Gerard Pals; Rogier A. Oldenburg; Jos A. Bekkers; Adriaan Moelker; Bianca M. de Graaf; Gabor Matyas; Ingrid M.E. Frohn-Mulder; Janneke Timmermans; Yvonne Hilhorst-Hofstee; Jan Maarten Cobben; Hennie T. Brüggenwirth; Lut Van Laer; Bart Loeys; Julie De Backer; Paul Coucke; Harry C. Dietz; Patrick J. Willems; Ben A. Oostra; Anne De Paepe; Jolien W. Roos-Hesselink; Aida M. Bertoli-Avella; Marja W. Wessels

Background Aneurysms–osteoarthritis syndrome (AOS) is a new autosomal dominant syndromic form of thoracic aortic aneurysms and dissections characterised by the presence of arterial aneurysms and tortuosity, mild craniofacial, skeletal and cutaneous anomalies, and early-onset osteoarthritis. AOS is caused by mutations in the SMAD3 gene. Methods A cohort of 393 patients with aneurysms without mutation in FBN1, TGFBR1 and TGFBR2 was screened for mutations in SMAD3. The patients originated from The Netherlands, Belgium, Switzerland and USA. The clinical phenotype in a total of 45 patients from eight different AOS families with eight different SMAD3 mutations is described. In all patients with a SMAD3 mutation, clinical records were reviewed and extensive genetic, cardiovascular and orthopaedic examinations were performed. Results Five novel SMAD3 mutations (one nonsense, two missense and two frame-shift mutations) were identified in five new AOS families. A follow-up description of the three families with a SMAD3 mutation previously described by the authors was included. In the majority of patients, early-onset joint abnormalities, including osteoarthritis and osteochondritis dissecans, were the initial symptom for which medical advice was sought. Cardiovascular abnormalities were present in almost 90% of patients, and involved mainly aortic aneurysms and dissections. Aneurysms and tortuosity were found in the aorta and other arteries throughout the body, including intracranial arteries. Of the patients who first presented with joint abnormalities, 20% died suddenly from aortic dissection. The presence of mild craniofacial abnormalities including hypertelorism and abnormal uvula may aid the recognition of this syndrome. Conclusion The authors provide further insight into the phenotype of AOS with SMAD3 mutations, and present recommendations for a clinical work-up.


American Journal of Human Genetics | 2005

Homozygous Nonsense Mutations in KIAA1279 Are Associated with Malformations of the Central and Enteric Nervous Systems

Alice S. Brooks; Aida M. Bertoli-Avella; G Burzynski; Guido J. Breedveld; Jan Osinga; Ludolf G. Boven; Jane A. Hurst; Grazia M.S. Mancini; Maarten H. Lequin; René de Coo; Ivana Matera; Esther de Graaff; Carel Meijers; Patrick J. Willems; Dick Tibboel; Ben A. Oostra; Robert M. W. Hofstra

We identified, by homozygosity mapping, a novel locus on 10q21.3-q22.1 for Goldberg-Shprintzen syndrome (GOSHS) in a consanguineous Moroccan family. Phenotypic features of GOSHS in this inbred family included microcephaly and mental retardation, which are both central nervous system defects, as well as Hirschsprung disease, an enteric nervous system defect. Furthermore, since bilateral generalized polymicogyria was diagnosed in all patients in this family, this feature might also be considered a key feature of the syndrome. We demonstrate that homozygous nonsense mutations in KIAA1279 at 10q22.1, encoding a protein with two tetratrico peptide repeats, underlie this syndromic form of Hirschsprung disease and generalized polymicrogyria, establishing the importance of KIAA1279 in both enteric and central nervous system development.


European Journal of Human Genetics | 2004

Linkage disequilibrium in young genetically isolated Dutch population

Yurii S. Aulchenko; Peter Heutink; Ian Mackay; Aida M. Bertoli-Avella; Jan Pullen; Norbert Vaessen; Tessa Rademaker; Lodewijk A. Sandkuijl; Lon R. Cardon; Ben A. Oostra; Cornelia M. van Duijn

The design and feasibility of genetic studies of complex diseases are critically dependent on the extent and distribution of linkage disequilibrium (LD) across the genome and between different populations. We have examined genomewide and region-specific LD in a young genetically isolated population identified in the Netherlands by genotyping approximately 800 Short Tandem Repeat markers distributed genomewide across 58 individuals. Several regions were analyzed further using a denser marker map. The permutation-corrected measure of LD was used for analysis. A significant (P<0.0004) relation between LD and genetic distance on a genomewide scale was found. Distance explained 4% of the total LD variation. For fine-mapping data, distance accounted for a larger proportion of LD variation (up to 39%). A notable similarity in the genomewide distribution of LD was revealed between this population and other young genetically isolated populations from Micronesia and Costa Rica. Our study population and experiment was simulated in silico to confirm our knowledge of the history of the population. High agreement was observed between results of analysis of simulated and empirical data. We conclude that our population shows a high level of LD similar to that demonstrated previously in other young genetic isolates. In Europe, there may be a large number of young genetically isolated populations that are similar in history to ours. In these populations, a similar degree of LD is expected and thus they may be effectively used for linkage or LD mapping.


American Journal of Human Genetics | 2007

A Genomewide Screen for Late-Onset Alzheimer Disease in a Genetically Isolated Dutch Population

Fan Liu; Alejandro Arias-Vasquez; Kristel Sleegers; Yurii S. Aulchenko; Manfred Kayser; Pascual Sánchez-Juan; Bing-Jian Feng; Aida M. Bertoli-Avella; John C. van Swieten; Tatiana I. Axenovich; Peter Heutink; Christine Van Broeckhoven; Ben A. Oostra; Cornelia M. van Duijn

Alzheimer disease (AD) is the most common cause of dementia. We conducted a genome screen of 103 patients with late-onset AD who were ascertained as part of the Genetic Research in Isolated Populations (GRIP) program that is conducted in a recently isolated population from the southwestern area of The Netherlands. All patients and their 170 closely related relatives were genotyped using 402 microsatellite markers. Extensive genealogy information was collected, which resulted in an extremely large and complex pedigree of 4,645 members. The pedigree was split into 35 subpedigrees, to reduce the computational burden of linkage analysis. Simulations aiming to evaluate the effect of pedigree splitting on false-positive probabilities showed that a LOD score of 3.64 corresponds to 5% genomewide type I error. Multipoint analysis revealed four significant and one suggestive linkage peaks. The strongest evidence of linkage was found for chromosome 1q21 (heterogeneity LOD [HLOD]=5.20 at marker D1S498). Approximately 30 cM upstream of this locus, we found another peak at 1q25 (HLOD=4.0 at marker D1S218). These two loci are in a previously established linkage region. We also confirmed the AD locus at 10q22-24 (HLOD=4.15 at marker D10S185). There was significant evidence of linkage of AD to chromosome 3q22-24 (HLOD=4.44 at marker D3S1569). For chromosome 11q24-25, there was suggestive evidence of linkage (HLOD=3.29 at marker D11S1320). We next tested for association between cognitive function and 4,173 single-nucleotide polymorphisms in the linked regions in an independent sample consisting of 197 individuals from the GRIP region. After adjusting for multiple testing, we were able to detect significant associations for cognitive function in four of five AD-linked regions, including the new region on chromosome 3q22-24 and regions 1q25, 10q22-24, and 11q25. With use of cognitive function as an endophenotype of AD, our study indicates the that the RGSL2, RALGPS2, and C1orf49 genes are the potential disease-causing genes at 1q25. Our analysis of chromosome 10q22-24 points to the HTR7, MPHOSPH1, and CYP2C cluster. This is the first genomewide screen that showed significant linkage to chromosome 3q23 markers. For this region, our analysis identified the NMNAT3 and CLSTN2 genes. Our findings confirm linkage to chromosome 11q25. We were unable to confirm SORL1; instead, our analysis points to the OPCML and HNT genes.


Journal of the American College of Cardiology | 2012

Aggressive Cardiovascular Phenotype of Aneurysms-Osteoarthritis Syndrome Caused by Pathogenic SMAD3 Variants

Denise van der Linde; Ingrid van de Laar; Aida M. Bertoli-Avella; Rogier A. Oldenburg; Jos A. Bekkers; Francesco Mattace-Raso; Anton H. van den Meiracker; Adriaan Moelker; Fop van Kooten; Ingrid M.E. Frohn-Mulder; Janneke Timmermans; Els Moltzer; Jan Maarten Cobben; Lut Van Laer; Bart Loeys; Julie De Backer; Paul Coucke; Anne De Paepe; Yvonne Hilhorst-Hofstee; Marja W. Wessels; Jolien W. Roos-Hesselink

OBJECTIVES The purpose of this study was describe the cardiovascular phenotype of the aneurysms-osteoarthritis syndrome (AOS) and to provide clinical recommendations. BACKGROUND AOS, caused by pathogenic SMAD3 variants, is a recently described autosomal dominant syndrome characterized by aneurysms and arterial tortuosity in combination with osteoarthritis. METHODS AOS patients in participating centers underwent extensive cardiovascular evaluation, including imaging, arterial stiffness measurements, and biochemical studies. RESULTS We included 44 AOS patients from 7 families with pathogenic SMAD3 variants (mean age: 42 ± 17 years). In 71%, an aortic root aneurysm was found. In 33%, aneurysms in other arteries in the thorax and abdomen were diagnosed, and in 48%, arterial tortuosity was diagnosed. In 16 patients, cerebrovascular imaging was performed, and cerebrovascular abnormalities were detected in 56% of them. Fifteen deaths occurred at a mean age of 54 ± 15 years. The main cause of death was aortic dissection (9 of 15; 60%), which occurred at mildly increased aortic diameters (range: 40 to 63 mm). Furthermore, cardiac abnormalities were diagnosed, such as congenital heart defects (6%), mitral valve abnormalities (51%), left ventricular hypertrophy (19%), and atrial fibrillation (22%). N-terminal brain natriuretic peptide (NT-proBNP) was significantly higher in AOS patients compared with matched controls (p < 0.001). Aortic pulse wave velocity was high-normal (9.2 ± 2.2 m/s), indicating increased aortic stiffness, which strongly correlated with NT-proBNP (r = 0.731, p = 0.005). CONCLUSIONS AOS predisposes patients to aggressive and widespread cardiovascular disease and is associated with high mortality. Dissections can occur at relatively mildly increased aortic diameters; therefore, early elective repair of the ascending aorta should be considered. Moreover, cerebrovascular abnormalities were encountered in most patients.


American Journal of Human Genetics | 2009

Mutation in the AP4M1 Gene Provides a Model for Neuroaxonal Injury in Cerebral Palsy

Annemieke J. M. H. Verkerk; Rachel Schot; Belinda Dumee; Karlijn Schellekens; Sigrid Swagemakers; Aida M. Bertoli-Avella; Maarten H. Lequin; Jeroen Dudink; Paul Govaert; A.L. van Zwol; Jennifer Hirst; Marja W. Wessels; Coriene E. Catsman-Berrevoets; Frans W. Verheijen; Esther de Graaff; Irenaeus F.M. de Coo; Johan M. Kros; Rob Willemsen; Patrick J. Willems; Peter J. van der Spek; Grazia M.S. Mancini

Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G-->T), was identified. AP4M1, encoding for the mu subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRdelta2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury.


Journal of The American Society of Nephrology | 2008

ROBO2 Gene Variants Are Associated with Familial Vesicoureteral Reflux

Aida M. Bertoli-Avella; Maria Luisa Conte; Francesca Punzo; Bianca M. de Graaf; Giuliana Lama; Angela La Manna; Cesare Polito; Carolina Grassia; Bruno Nobili; Pier Francesco Rambaldi; Ben A. Oostra; Silverio Perrotta

The SLIT2 receptor ROBO2 plays a key role in the formation of the ureteric bud, and its inactivation in mice leads to supernumerary ureteric bud development, lack of ureter remodeling, and improper insertion of the ureters into the bladder. Recently, two heterozygous ROBO2 missense mutations were identified in two families with primary vesicoureteral reflux occurring in combination with congenital anomalies of the kidney and urinary tract (VUR/CAKUT). This study investigated a possible causal role of ROBO2 gene variants in 95 unrelated patients with primary VUR (n = 78) or VUR/CAKUT. Eighty-two percent of all patients had a family history of genitourinary anomalies. Twenty-four ROBO2 gene variants were identified by direct sequencing of all 26 exons and the exon-intron boundaries. Of these, four led to amino acid substitutions: Gly328Ser, Asn515Ile, Asp766Gly, and Arg797Gln. When the families were examined, the missense variants co-segregated with VUR (three families) or VUR/CAKUT (one family). These variants were not found in 190 control subjects, and the affected amino acids have been conserved through evolution. In conclusion, a relatively high frequency of ROBO2 variants (5.1%) was found in familial cases; however, functional studies and validation in other cohorts are warranted.

Collaboration


Dive into the Aida M. Bertoli-Avella's collaboration.

Top Co-Authors

Avatar

Ben A. Oostra

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Marja W. Wessels

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Arndt Rolfs

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar

Ingrid van de Laar

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Bianca M. de Graaf

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rogier A. Oldenburg

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Yurii S. Aulchenko

Novosibirsk State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge