Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aiden Eblimit is active.

Publication


Featured researches published by Aiden Eblimit.


American Journal of Human Genetics | 2016

Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa

Gavin Arno; Smriti Agrawal; Aiden Eblimit; James Bellingham; Mingchu Xu; F Wang; Christina Chakarova; David A. Parfitt; Amelia Lane; Thomas Burgoyne; Sarah Hull; Keren Carss; Alessia Fiorentino; Mj Hayes; Peter M.G. Munro; R Nicols; Nikolas Pontikos; Graham E. Holder; Ukirdc; C Asomugha; Fl Raymond; Anthony T. Moore; Plagnol; Michel Michaelides; Alison J. Hardcastle; Yixin Li; C Cukras; Andrew R. Webster; Michael E. Cheetham; Rui Chen

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.


Human Molecular Genetics | 2015

Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina

Aiden Eblimit; Thanh Minh T Nguyen; Yiyun Chen; Julian Esteve-Rudd; Hua Zhong; Stef J.F. Letteboer; Jeroen van Reeuwijk; David L. Simons; Qian Ding; Ka Man Wu; Yumei Li; Sylvia E. C. van Beersum; Yalda Moayedi; Huidan Xu; Patrick Pickard; Keqing Wang; Lin Gan; Samuel M. Wu; David S. Williams; Graeme Mardon; Ronald Roepman; Rui Chen

Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are severe hereditary diseases that causes visual impairment in infants and children. SPATA7 has recently been identified as the LCA3 and juvenile RP gene in humans, whose function in the retina remains elusive. Here, we show that SPATA7 localizes at the primary cilium of cells and at the connecting cilium (CC) of photoreceptor cells, indicating that SPATA7 is a ciliary protein. In addition, SPATA7 directly interacts with the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1), a key connecting cilium protein that has also been linked to LCA. In the retina of Spata7 null mutant mice, a substantial reduction of RPGRIP1 levels at the CC of photoreceptor cells is observed, suggesting that SPATA7 is required for the stable assembly and localization of the ciliary RPGRIP1 protein complex. Furthermore, our results pinpoint a role of this complex in protein trafficking across the CC to the outer segments, as we identified that rhodopsin accumulates in the inner segments and around the nucleus of photoreceptors. This accumulation then likely triggers the apoptosis of rod photoreceptors that was observed. Loss of Spata7 function in mice indeed results in a juvenile RP-like phenotype, characterized by progressive degeneration of photoreceptor cells and a strongly decreased light response. Together, these results indicate that SPATA7 functions as a key member of a retinal ciliopathy-associated protein complex, and that apoptosis of rod photoreceptor cells triggered by protein mislocalization is likely the mechanism of disease progression in LCA3/ juvenile RP patients.


Investigative Ophthalmology & Visual Science | 2015

ATF6 is mutated in early onset photoreceptor degeneration with macular involvement

Mingchu Xu; Violet Gelowani; Aiden Eblimit; Feng Wang; Marielle P. Young; Briana L. Sawyer; Li Zhao; Glen Jenkins; Donnell J. Creel; Keqing Wang; Zhongqi Ge; Hui Wang; Yumei Li; M. Elizabeth Hartnett; Rui Chen

PURPOSE Photoreceptor degeneration (PRD) is a genetically heterogeneous retinal disorder. Although a number of genes involved in PRD have been identified, their genetic basis remains unknown in a significant number of patients. In this study, we aimed to identify novel disease-causing genes of PRD. METHODS Comprehensive ocular examinations were performed in a 2-year-old patient diagnosed with early onset PRD. Retinal capture sequencing was performed to screen causative mutations in known retinal disease-causing loci. Whole-exome sequencing (WES) and a series of variant-filtering strategies were applied for identifying novel disease-causing genes. Retina ATF6 expression was confirmed by immunohistochemistry. RT-PCR was performed to identify ATF6 mRNA in the patient. RESULTS The patient showed typical PRD features, with macular involvement and ellipsoid zone irregularities. Results of retinal capture sequencing were negative. WES data led to identification of biallelic loss-of-function mutations in the ATF6 gene. The first variant generates a premature stop codon (NCBI accession no. NM_007348: c.1126C>T, p.R376*) and the second variant affects a splicing donor site (NM_007348: c.1533+1G>C). Sanger sequencing confirmed the 2 alleles are from 1 parent each. Both of the variants are extremely rare in the population. The splicing variant causes either intron inclusion or exon skipping in the patient, thus severely disrupting ATF6 functional domains. ATF6 is expressed in three neuronal cell layers of mouse retina. CONCLUSIONS Our results support ATF6 as a novel disease-causing gene for PRD and suggest that disrupted protein quality control mechanisms may be a novel pathological mechanism underlying human retinal degeneration.


BMC Complementary and Alternative Medicine | 2014

Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells

Adila Tuerxuntayi; Yongqiang Liu; Ablajan Tulake; Maidina Kabas; Aiden Eblimit; Haji Akber Aisa

BackgroundKaliziri extract (KZE) is a traditional Uyghur medicine (TUM), used by traditional hospitals in China as an injection for treatment of vitiligo for more than 30 years. Clinical application has shown that this medicine has obvious therapeutic effects. However, its phytochemical analysis and mechanism have not been examined.MethodsKZE was extracted from seeds of Kaliziri [Vernonia anthelmintica (L.) Willd.] in ethanol-water (80:20, v/v), its components were identified by LC-MS/MS, and the signaling pathway of melanin synthesis in KZE treated murine B16 melanoma cells was examined by western blotting.ResultsLiquid chromatography-mass spectrometry analysis confirmed that the main components of KZE are flavonoids. KZE increased the tyrosinase activity and melanin content in a dose-dependent manner at concentrations of 5-40 μg/ml, and treatment with 20 μg/ml of KZE enhanced the expression of tyrosinase in B16 cells in a time-dependent manner.ConclusionsKZE induced melanogenesis by increasing the expression of TYR, TRP-1, TRP-2 and MITF in B16 cells.


Human Mutation | 2016

ADIPOR1 Is Mutated in Syndromic Retinitis Pigmentosa

Mingchu Xu; Aiden Eblimit; Jing Wang; Jianli Li; Feng Wang; Li Zhao; Xia Wang; Ningna Xiao; Yumei Li; Lee-Jun C. Wong; Richard Alan Lewis; Rui Chen

Retinitis pigmentosa (RP) is a genetically heterogeneous retinal disorder. Despite the numerous genes associated with RP already identified, the genetic basis remains unknown in a substantial number of patients and families. In this study, we performed whole‐exome sequencing to investigate the molecular basis of a syndromic RP case that cannot be solved by mutations in known disease‐causing genes. After applying a series of variant filtering strategies, we identified an apparently homozygous frameshift mutation, c.31delC (p.Q11Rfs*24) in the ADIPOR1 gene. The reported phenotypes of Adipor1‐null mice contain retinal dystrophy, obesity, and behavioral abnormalities, which highly mimic those in the syndromic RP patient. We further confirmed ADIPOR1 retina expression by immunohistochemistry. Our results established ADIPOR1 as a novel disease‐causing gene for syndromic RP and highlight the importance of fatty acid transport in the retina.


Human Molecular Genetics | 2016

Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa

Mingchu Xu; Takeyuki Yamada; Zixi Sun; Aiden Eblimit; Irma Lopez; Feng Wang; Hiroshi Manya; Shan Xu; Li Zhao; Yumei Li; Adva Kimchi; Dror Sharon; Ruifang Sui; Tamao Endo; Robert K. Koenekoop; Rui Chen

A growing number of human diseases have been linked to defects in protein glycosylation that affects a wide range of organs. Among them, O-mannosylation is an unusual type of protein glycosylation that is largely restricted to the muscular and nerve system. Consistently, mutations in genes involved in the O-mannosylation pathway result in infantile-onset, severe developmental defects involving skeleton muscle, brain and eye, such as the muscle-eye-brain disease (MIM no. 253280). However, the functional importance of O-mannosylation in these tissues at later stages remains largely unknown. In our study, we have identified recessive mutations in POMGNT1, which encodes an essential component in O-mannosylation pathway, in three unrelated families with autosomal recessive retinitis pigmentosa (RP), but without extraocular involvement. Enzymatic assay of these mutant alleles demonstrate that they greatly reduce the POMGNT1 enzymatic activity and are likely to be hypomorphic. Immunohistochemistry shows that POMGNT1 is specifically expressed in photoreceptor basal body. Taken together, our work identifies a novel disease-causing gene for RP and indicates that proper protein O-mannosylation is not only essential for early organ development, but also important for maintaining survival and function of the highly specialized retinal cells at later stages.


Genetics in Medicine | 2016

Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1.

Zachry T. Soens; Yuanyuan Li; Li Zhao; Aiden Eblimit; Rachayata Dharmat; Yumei Li; Yiyun Chen; Mohammed Naqeeb; Norma Fajardo; Irma Lopez; Zhaoxia Sun; Robert K. Koenekoop; Rui Chen

Purpose:Leber congenital amaurosis (LCA) is an early-onset form of retinal degeneration. Six of the 22 known LCA genes encode photoreceptor ciliary proteins. Despite the identification of 22 LCA genes, the genetic basis of ~30% of LCA patients remains unknown. We sought to investigate the cause of disease in the remaining 30% by examining cilia-associated genes.Methods:Whole-exome sequencing was performed on an LCA cohort of 212 unsolved probands previously screened for mutations in known retinal-disease genes. Immunohistochemistry using mouse retinas was used to confirm protein localization and zebrafish were used to perform rescue experiments.Results:A homozygous nonsynonymous mutation was found in a single proband in CLUAP1, a gene required for ciliogenesis and cilia maintenance. Cluap1 knockout zebrafish exhibit photoreceptor cell death as early as 5 days after fertilization, and rescue experiments revealed that our proband’s mutation is significantly hypomorphic.Conclusion:Consistent with the knowledge that CLUAP1 plays an important role in cilia function and that cilia are critical to photoreceptor function, our results indicate that hypomorphic mutations in CLUAP1 can result in dysfunctional photoreceptors without systemic abnormalities. This is the first report linking mutations in CLUAP1 to human disease and establishes CLUAP1 as a candidate LCA gene.Genet Med 18 10, 1044–1051.


Scientific Reports | 2016

Next-generation sequencing-based molecular diagnosis of 12 inherited retinal disease probands of Uyghur ethnicity

Abulikemu Tajiguli; Mingchu Xu; Qing Fu; Rouzimaimaiti Yiming; Keqing Wang; Yumei Li; Aiden Eblimit; Ruifang Sui; Rui Chen; Haji Akber Aisa

Inherited retinal disease (IRD) is a category of genetic disorders affecting retina. Understanding the molecular basis of IRD is vital for clinical and genetic classification of patients. Uyghur people is an isolated ethnic group mainly residing in northwestern China with genetic admixture from Europeans and East Asians. The genetic etiology of IRD in this specific population still remains unknown. Here, by next-generation sequencing (NGS), we screened mutations in over 200 known retinal disease genes in a cohort of 12 unrelated Uyghur IRD probands. Out of the 12 probands, six are solved with high confidence, two with low confidence, while the remaining four are unsolved. We identified known disease-causing alleles in this cohort that suggest ancient Uyghur migration and also discovered eight novel disease-associated variants. Our results showed NGS-based mutation screening as a reliable approach for molecular diagnosis. In addition, this approach can also be applied to reveal the genetic history of a specific ethnic group.


American Journal of Human Genetics | 2017

Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies

Mingchu Xu; Yajing (Angela) Xie; Hana Abouzeid; Christopher T. Gordon; Alessia Fiorentino; Zixi Sun; Anna Lehman; Ihab S. Osman; Rachayata Dharmat; Rosa Riveiro-Alvarez; Linda Bapst-Wicht; Darwin Babino; Gavin Arno; Virginia Busetto; Li Zhao; Hui Li; Miguel A. Lopez-Martinez; Liliana F. Azevedo; Laurence Hubert; Nikolas Pontikos; Aiden Eblimit; Isabel Lorda-Sanchez; Valeria Kheir; Vincent Plagnol; Myriam Oufadem; Zachry T. Soens; Lizhu Yang; Christine Bole-Feysot; Rolph Pfundt; Nathalie Allaman-Pillet

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.


Gene Therapy | 2015

AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa

Hua Zhong; Aiden Eblimit; Yalda Moayedi; Sanford L. Boye; Vince A. Chiodo; Yiyun Chen; Yumei Li; Ralph M Nichols; William W. Hauswirth; Rui Chen; Graeme Mardon

Loss of SPATA7 function causes the pathogenesis of Leber congenital amaurosis and retinitis pigmentosa. Spata7 knockout mice mimic human SPATA7–related retinal disease with apparent photoreceptor degeneration observed as early as postnatal day 15 (P15). To test the efficacy of adeno-associated virus (AAV)-mediated gene therapy for rescue of photoreceptor survival and function in Spata7 mutant mice, we employed the AAV8(Y733F) vector carrying hGRK1-driven full-length FLAG-tagged Spata7 cDNA to target both rod and cone photoreceptors. Following subretinal injection of this vector, FLAG-tagged SPATA7 was found to colocalize with endogenous SPATA7 in wild-type mice. In Spata7 mutant mice initially treated at P15, we observed improvement of photoresponse, photoreceptor ultrastructure and significant alleviation of photoreceptor degeneration. Furthermore, we performed treatments at P28 and P56 and found that all treatments (P15-P56) can ameliorate rod and cone loss in the long term (1 year); however, none efficiently protect photoreceptors from degeneration by 86 weeks of age as only a small amount of treated photoreceptors can survive to this time. This study demonstrates long-term improvement of photoreceptor function by AAV8(Y733F)-introduced Spata7 expression in a mouse model as potential treatment of the human disease, but also suggests that treated mutant photoreceptors still undergo progressive degeneration.

Collaboration


Dive into the Aiden Eblimit's collaboration.

Top Co-Authors

Avatar

Rui Chen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yumei Li

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Graeme Mardon

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mingchu Xu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Keqing Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Li Zhao

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yiyun Chen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Feng Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rachayata Dharmat

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Smriti Agrawal

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge