Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aihua Gu is active.

Publication


Featured researches published by Aihua Gu.


Human Molecular Genetics | 2009

The b2/b3 subdeletion shows higher risk of spermatogenic failure and higher frequency of complete AZFc deletion than the gr/gr subdeletion in a Chinese population

Chuncheng Lu; Jie Zhang; Yingchun Li; Yankai Xia; Feng Zhang; Bin Wu; Guixiang Ji; Aihua Gu; Shoulin Wang; Li Jin; Xinru Wang

Microdeletions in the azoospermia factor (AZF) regions on the long arm of the human Y chromosome are known to be associated with spermatogenic failure. Although AZFc is recurrently deleted in azoospermic or oligozoospermic males, no definitive conclusion has been reached for the contribution of different partial AZFc deletions to spermatogenic failure. To further investigate the roles of partial deletions in spermatogenic failure and the relationship between the complete and partial AZFc deletions, we performed deletion typing and Y chromosome haplogrouping in 756 idiopathic infertile Han-Chinese and 391 healthy Han-Chinese. We found that both the b2/b3 partial deletion and the DAZ3/4+CDY1a deletion pattern were associated with spermatogenic failure. We also confirmed that two previously reported fixations, the b2/b3 deletion in haplogroup N1 and the gr/gr deletion in haplogroup Q1. Remarkably, the frequency of the complete AZFc deletion in haplogroup N1 was significantly higher than that in the haplogroup Q1. These results suggest that the b2/b3 partial deletion was associated with a higher risk of complete AZFc deletion compared with the gr/gr partial deletion. Compared with the gr/gr deletion, the b2/b3 deletion presents a shorter distance among recombination targets and longer recombination substrates, which may be responsible for the increased incidence of subsequent recombination events that can lead to the complete AZFc deletion in this Chinese study population. The susceptibility of the b2/b3 partial deletion to the complete AZFc deletion deserves further investigation in larger and diverse populations, especially those with a relatively high frequency of b2/b3 and gr/gr partial deletions.


Chemosphere | 2011

Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish

Xiangguo Shi; Aihua Gu; Guixiang Ji; Yuan Li; Jing Di; Jing Jin; Fan Hu; Yan Long; Yankai Xia; Chuncheng Lu; Ling Song; Shoulin Wang; Xinru Wang

Cypermethrin, a type II pyrethroid insecticide, is widely used throughout the world in agriculture, forestry, horticulture and homes. Though the neurotoxicity of cypermethrin has been thoroughly studied in adult rodents, little is so far available regarding the developmental toxicity of cypermethrin to fish in early life stages. To explore the potential developmental toxicity of cypermethrin, 4-h post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of cypermethrin (0, 25, 50, 100, 200 and 400 μg L⁻¹) until 96 h. Among a suite of morphological abnormalities, the unique phenotype curvature was observed at concentrations as low as 25 μg L⁻¹. Studies revealed that 400 μg L⁻¹ cypermethrin significantly increased malondialdehyde production. In addition, activity of antioxidative enzymes including superoxide dismutase and catalase were significantly induced in zebrafish larvae in a concentration-dependent manner. To further investigate the toxic effects of cypermethrin on fish, acridine orange (AO) staining was performed at 400 μg L⁻¹ cypermethrin and the result showed notable signs of apoptosis mainly in the nervous system. Cypermethrin also down-regulated ogg1 and increased p53 gene expression as well as the caspase-3 activity. Our results demonstrate that cypermethrin was able to induce oxidative stress and produce apoptosis through the involvement of caspases in zebrafish embryos. In this study, we investigated the developmental toxicity of cypermethrin using zebrafish embryos, which could be helpful in fully understanding the potential mechanisms of cypermethrin exposure during embryogenesis and also suggested that zebrafish could serve as an ideal model for studying developmental toxicity of environmental contaminants.


PLOS ONE | 2013

IDH1/IDH2 Mutations Define the Prognosis and Molecular Profiles of Patients with Gliomas: A Meta-Analysis

Peng Zou; Haitao Xu; Pin Chen; Qing Yan; Lin Zhao; Peng Zhao; Aihua Gu

Background Isocitrate dehydrogenase isoforms 1 and 2 (IDH1 and IDH2) mutations have received considerable attention since the discovery of their relation with human gliomas. The predictive value of IDH1 and IDH2 mutations in gliomas remains controversial. Here, we present the results of a meta-analysis of the associations between IDH mutations and both progression-free survival (PFS) and overall survival (OS) in gliomas. The interrelationship between the IDH mutations and MGMT promoter hypermethylation, EGFR amplification, codeletion of chromosomes 1p/19q and TP53 gene mutation were also revealed. Methodology and Principal Findings An electronic literature search of public databases (PubMed, Embase databases) was performed. In total, 10 articles, including 12 studies in English, with 2,190 total cases were included in the meta-analysis. The IDH mutations were frequent in WHO grade II and III glioma (59.5%) and secondary glioblastomas (63.4%) and were less frequent in primary glioblastomas (7.13%). Our study provides evidence that IDH mutations are tightly associated with MGMT promoter hypermethylation (P<0.001), 1p/19q codeletion (P<0.001) and TP53 gene mutation (P<0.001) but are mutually exclusive with EGFR amplification (P<0.001). This meta-analysis showed that the combined hazard ratio (HR) estimate for overall survival and progression-free survival in patients with IDH mutations was 0.33 (95% CI: 0.25–0.42) and 0.38 (95% CI: 0.21–0.68), compared with glioma patients whose tumours harboured the wild-type IDH. Subgroup analyses based on tumour grade also revealed that the presence of IDH mutations was associated with a better outcome. Conclusion Our study suggests that IDH mutations, which are closely linked to the genomic profile of gliomas, are potential prognostic biomarkers for gliomas.


PLOS ONE | 2012

Association of the Maternal MTHFR C677T Polymorphism with Susceptibility to Neural Tube Defects in Offsprings: Evidence from 25 Case-Control Studies

Lifeng Yan; Lin Zhao; Yan Long; Peng Zou; Guixiang Ji; Aihua Gu; Peng Zhao

Background Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA methylation, DNA synthesis, and DNA repair. In addition, it is a possible risk factor in neural tube defects (NTDs). The association of the C677T polymorphism in the MTHFR gene and NTD susceptibility has been widely demonstrated, but the results remain inconclusive. In this study, we performed a meta-analysis with 2429 cases and 3570 controls to investigate the effect of the MTHFR C677T polymorphism on NTDs. Methods An electronic search of PubMed and Embase database for papers on the MTHFR C677T polymorphism and NTD risk was performed. All data were analysed with STATA (version 11). Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were performed in our meta-analysis. Results A significant association between the MTHFR C677T polymorphism and NTD susceptibility was revealed in our meta-analysis ( TT versus CC: OR  = 2.022, 95% CI: 1.508, 2.712; CT+TT versus CC: OR  = 1.303, 95% CI: 1.089, 1.558; TT versus CC+CT: OR  = 1.716, 95% CI: 1.448, 2.033; 2TT+CT versus 2CC+CT: OR  = 1.330, 95% CI: 1.160, 1.525). Moreover, an increased NTD risk was found after stratification of the MTHFR C677T variant data by ethnicity and source of controls. Conclusion The results suggested the maternal MTHFR C677T polymorphism is a genetic risk factor for NTDs. Further functional studies to investigate folate-related gene polymorphisms, periconceptional multivitamin supplements, complex interactions, and the development of NTDs are warranted.


Reproductive Toxicology | 2011

Effects of non-occupational environmental exposure to pyrethroids on semen quality and sperm DNA integrity in Chinese men

Guixiang Ji; Yankai Xia; Aihua Gu; Xiangguo Shi; Yan Long; Ling Song; Shoulin Wang; Xinru Wang

Observations in several western and Asiatic countries point toward a decline in semen quality which may be associated with environmental exposures. To investigate the effect of environmental exposure to pyrethroids on sperm DNA integrity and semen quality, 240 men were recruited from an infertility clinic through the clinic following strict eligibility screening. Urinary 3-phenoxybenzoic acid (3-PBA) concentration, semen quality, and sperm DNA integrity were evaluated. After adjustment for potential confounders, a significant inverse correlation was observed between the urinary 3-PBA level and the sperm concentration (β=-0.27, 95%CI: -0.41 to -0.12, P<0.001). Moreover, we also found a significant positive correlation between urinary 3-PBA level and sperm DNA fragmentation (β=0.27, 95%CI: 0.15-0.39, P<0.001). Our results suggest that non-occupational environmental pyrethroids exposure may have a negative impact on sperm DNA integrity and semen quality in Chinese males.


BMC Medicine | 2012

Common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility

Guixiang Ji; Yan Long; Yong Zhou; Cong Huang; Aihua Gu; Xinru Wang

BackgroundThe mismatch repair (MMR) pathway plays an important role in the maintenance of the genome integrity, meiotic recombination and gametogenesis. This study investigated whether genetic variations in MMR genes are associated with an increased risk of sperm DNA damage and male infertility.MethodsWe selected and genotyped 21 tagging single nucleotide polymorphisms (SNPs) in five MMR genes (MLH1, MLH3, PMS2, MSH4 and MSH5) using the SNPstream 12-plex platform in a case-control study of 1,292 idiopathic infertility patients and 480 fertile controls in a Chinese population. Sperm DNA damage levels were detected with the Tdt-mediated dUTP nick end labelling (TUNEL) assay in 450 cases. Fluorescence resonance energy transfer (FRET) and co-immunoprecipitation techniques were employed to determine the effects of functional variants.ResultsOne intronic SNP in MLH1 (rs4647269) and two non-synonymous SNPs in PMS2 (rs1059060, Ser775Asn) and MSH5 (rs2075789, Pro29Ser) seem to be risk factors for the development of azoospermia or oligozoospermia. Meanwhile, we also identified a possible contribution of PMS2 rs1059060 to the risk of male infertility with normal sperm count. Among patients with normal sperm count, MLH1 rs4647269 and PMS2 rs1059060 were associated with increased sperm DNA damage. Functional analysis revealed that the PMS2 rs1059060 can affect the interactions between MLH1 and PMS2.ConclusionsOur results provide evidence supporting the involvement of genetic polymorphisms in MMR genes in the aetiology of male infertility.


Free Radical Biology and Medicine | 2012

Genetic variants in antioxidant genes are associated with sperm DNA damage and risk of male infertility in a Chinese population

Guixiang Ji; Aihua Gu; Yubang Wang; Cong Huang; Fan Hu; Yong Zhou; Ling Song; Xinru Wang

To test the hypothesis that polymorphisms in antioxidant genes are more susceptible to sperm DNA damage and male infertility, we examined 11 single-nucleotide polymorphisms from six antioxidant genes (GPX1, CAT, PON1, NQO1, SOD2/MnSOD, and SOD3) in 580 infertility cases and 580 controls from a Chinese population-based case-control study (NJMU Infertility Study). Genotypes were determined using the OpenArray platform. Sperm DNA fragmentation was detected using the Tdt-mediated dUTP nick-end labeling assay, and the level of 8-hydroxydeoxyguanosine (8-OHdG) in sperm DNA was measured using immunofluorescence. The adjusted odds ratio and 95% confidence interval (CI) were estimated using unconditional logistic regression. The results indicated that the PON1 Arg192Glu (rs662) and SOD2 Val16Ala (rs4880) variant genotypes were associated with a significantly higher risk of male infertility. In addition, subjects carrying variant genotypes of both loci had a twofold (95% CI, 1.42-2.90) increase in the risk of male infertility, indicating a significant gene-gene interaction between these two loci (P for multiplicative interaction=0.045). Moreover, linear regression analysis showed that individuals carrying the PON1 Arg192Glu (rs662) or SOD2 Val16Ala (rs4880) variants have significantly higher levels of sperm DNA fragmentation and 8-OHdG. These data suggest that genetic variations in antioxidant genes may contribute to oxidative sperm DNA damage and male infertility.


PLOS ONE | 2013

Neurotoxicity of Perfluorooctane Sulfonate to Hippocampal Cells in Adult Mice

Yan Long; Yubang Wang; Guixiang Ji; Lifeng Yan; Fan Hu; Aihua Gu

Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA) and 3,4-dihydrophenylacetic acid (DOPAC) in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase), Herc5 (hect domain and RLD 5 isoform 2) and Tyro3 (TYRO3 protein tyrosine kinase 3) were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit), Gzma (Isoform HF1 of Granzyme A precursor), Plau (Urokinase-type plasminogen activator precursor) and Lig4 (DNA ligase 4) were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i) increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii) the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice.


Toxicology Letters | 2010

Exposure to fenvalerate causes brain impairment during zebrafish development

Aihua Gu; Xiangguo Shi; Chen Yuan; Guixiang Ji; Yong Zhou; Yan Long; Ling Song; Shoulin Wang; Xinru Wang

Compared with increasing evidence suggesting that fenvalerate is neurotoxic to adults, further information regarding developmental toxicity of this compound attracts more attention. In this study, we used zebrafish as an environmental monitoring model to further explore the potential toxicity of fenvalerate. Our results demonstrated that larvae exposed to fenvalerate for 24-96 h displayed obvious morphological abnormalities, and the LC50 concentrations were 131.95 microg/L (LC50-24h), 107.18 microg/L (LC50-48 h), 21.76 microg/L (LC50-72 h), and 6.25 microg/L (LC50-96 h). To further investigate the effects of fenvalerate on embryos and larvae, acridine orange staining was performed at a 50 microg/L concentration. Staining showed notable signs of apoptosis mainly in the brain. Further studies revealed that fenvalerate induced alterations in SOD activity in larvae were concentration dependent and also related to the length of exposure. Fenvalerate also down-regulated the expression of ogg1 and dlx2 genes in a concentration dependent manner, which indicated that the oxidative-DNA repair system as well as neurogenesis were impaired. In this study, we investigated the toxicity of fenvalerate using zebrafish, that provided new evidence of observable brain impairment during embryogenesis due to fenvalerate exposure and discussed their implications for the development of fenvalerate induced neurotoxicity.


Development | 2013

miR-34b regulates multiciliogenesis during organ formation in zebrafish

Lei Wang; Cong Fu; Hong-Bo Fan; Ting-Ting Du; Mei Dong; Yi Chen; Yi Jin; Yi Zhou; Min Deng; Aihua Gu; Qing Jing; Ting Xi Liu; Yong Zhou

Multiciliated cells (MCCs) possess multiple motile cilia and are distributed throughout the vertebrate body, performing important physiological functions by regulating fluid movement in the intercellular space. Neither their function during organ development nor the molecular mechanisms underlying multiciliogenesis are well understood. Although dysregulation of members of the miR-34 family plays a key role in the progression of various cancers, the physiological function of miR-34b, especially in regulating organ formation, is largely unknown. Here, we demonstrate that miR-34b expression is enriched in kidney MCCs and the olfactory placode in zebrafish. Inhibiting miR-34b function using morpholino antisense oligonucleotides disrupted kidney proximal tubule convolution and the proper distribution of distal transporting cells and MCCs. Microarray analysis of gene expression, cilia immunostaining and a fluid flow assay revealed that miR-34b is functionally required for the multiciliogenesis of MCCs in the kidney and olfactory placode. We hypothesize that miR-34b regulates kidney morphogenesis by controlling the movement and distribution of kidney MCCs and fluid flow. We found that cmyb was genetically downstream of miR-34b and acted as a key regulator of multiciliogenesis. Elevated expression of cmyb blocked membrane docking of centrioles, whereas loss of cmyb impaired centriole multiplication, both of which resulted in defects in the formation of ciliary bundles. Thus, miR-34b serves as a guardian to maintain the proper level of cmyb expression. In summary, our studies have uncovered an essential role for miR-34b-Cmyb signaling during multiciliogenesis and kidney morphogenesis.

Collaboration


Dive into the Aihua Gu's collaboration.

Top Co-Authors

Avatar

Xinru Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Guixiang Ji

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yankai Xia

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Shoulin Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ling Song

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Cheng Xu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chuncheng Lu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Peng Zhao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Qian Liu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lifeng Yan

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge