Aileen M. Bailey
St. Mary's College of Maryland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aileen M. Bailey.
Nature Neuroscience | 2013
Xiang Cai; Angy J. Kallarackal; Mark D. Kvarta; Sasha Goluskin; Kaitlin Gaylor; Aileen M. Bailey; Hey Kyoung Lee; Richard L. Huganir; Scott M. Thompson
The causes of major depression remain unknown. Antidepressants elevate concentrations of monoamines, particularly serotonin, but it remains uncertain which downstream events are critical to their therapeutic effects. We found that endogenous serotonin selectively potentiated excitatory synapses formed by the temporoammonic pathway with CA1 pyramidal cells via activation of serotonin receptors (5-HT1BRs), without affecting nearby Schaffer collateral synapses. This potentiation was expressed postsynaptically by AMPA-type glutamate receptors and required calmodulin-dependent protein kinase–mediated phosphorylation of GluA1 subunits. Because they share common expression mechanisms, long-term potentiation and serotonin-induced potentiation occluded each other. Long-term consolidation of spatial learning, a function of temporoammonic-CA1 synapses, was enhanced by 5-HT1BR antagonists. Serotonin-induced potentiation was quantitatively and qualitatively altered in a rat model of depression, restored by chronic antidepressants, and required for the ability of chronic antidepressants to reverse stress-induced anhedonia. Changes in serotonin-mediated potentiation, and its recovery by antidepressants, implicate excitatory synapses as a locus of plasticity in depression.
The Journal of Neuroscience | 2013
Angy J. Kallarackal; Mark D. Kvarta; Erin Cammarata; Leelah Jaberi; Xiang Cai; Aileen M. Bailey; Scott M. Thompson
Chronic stress promotes depression, but how it disrupts cognition and mood remains unknown. Chronic stress causes atrophy of pyramidal cell dendrites in the hippocampus and cortex in human and animal models, and a depressive-like behavioral state. We now test the hypothesis that excitatory temporoammonic (TA) synapses in the distal dendrites of CA1 pyramidal cells in rats are altered by chronic unpredictable stress (CUS) and restored by chronic antidepressant treatment, in conjunction with the behavioral consequences of CUS. We observed a decrease in AMPAR-mediated excitation at TA-CA1 synapses, but not Schaffer collateral-CA1 synapses, after CUS, with a corresponding layer-specific decrease in GluA1 expression. Both changes were reversed by chronic fluoxetine. CUS also disrupted long-term memory consolidation in the Morris water maze, a function of TA-CA1 synapses. The decreases in TA-CA1 AMPAR-mediated excitation and performance in the consolidation test were correlated positively with decreases in sucrose preference, a measure of anhedonia. We conclude that chronic stress selectively decreases AMPAR number and function at specific synapses and suggest that this underlies various depressive endophenotypes. Our findings provide evidence that glutamatergic dysfunction is an underlying cause of depression and that current first-line antidepressant drugs act by restoring excitatory synaptic strength. Our findings suggest novel therapeutic targets for this debilitating disease.
PLOS ONE | 2013
Jean A. Milstein; Ahmed Elnabawi; Monika Vinish; Thomas W Swanson; Jennifer K. Enos; Aileen M. Bailey; Bryan Kolb; Douglas O. Frost
Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug treatment. Most antipsychotic drugs are potent antagonists or partial agonists of dopamine D2 receptors; atypical antipsychotic drugs also antagonize type 2A serotonin receptors. Dopamine and serotonin regulate many neurodevelopmental processes. Thus, early life antipsychotic drug treatment can, potentially, perturb these processes, causing long-term behavioral- and neurobiological impairments. Here, we treated adolescent, male rats with olanzapine on post-natal days 28–49. As adults, they exhibited impaired working memory, but normal spatial memory, as compared to vehicle-treated control rats. They also showed a deficit in extinction of fear conditioning. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, parietal cortex, nucleus accumbens core and dentate gyrus, adolescent olanzapine treatment altered the developmental dynamics and mature values of dendritic spine density in a region-specific manner. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, D1 binding was reduced and binding of GABAA receptors with open Cl− channels was increased. In medial prefrontal cortex, D2 binding was also increased. The persistence of these changes underscores the importance of improved understanding of the enduring sequelae of pediatric APD treatment as a basis for weighing the benefits and risks of adolescent antipsychotic drug therapy, especially prophylactic treatment in high risk, asymptomatic patients. The long-term changes in neurotransmitter receptor binding and neural circuitry induced by adolescent APD treatment may also cause enduring changes in behavioral- and neurobiological responses to other therapeutic- or illicit psychotropic drugs.
Brain Research | 2003
Aileen M. Bailey; Meghan L Rudisill; Emily J Hoof; Michelle L Loving
Rats with bilateral 192 IgG-saporin lesions to the nucleus basalis magnocellularis (nBM) were tested on olfactory discrimination learning set (ODLS), olfactory discrimination reversal learning set (DRLS), and open field activity. Control animals demonstrated learning set in both the ODLS and DRLS tasks. The nBM-lesioned animals showed initial acquisition impairment in learning set in the ODLS task but eventually demonstrated learning set in both ODLS and DRLS tasks. There were no group differences in open-field activity. Results suggest that removal of the nBM cholinergic system through 192 IgG-saporin lesions impairs early acquisition of learning set compared to control animals, but does not prevent later use of learning set formation. Implications for the non-cholinergic basal forebrain cells in learning set are discussed.
Journal of Neurophysiology | 2015
Mark D. Kvarta; Keighly E. Bradbrook; Hannah M. Dantrassy; Aileen M. Bailey; Scott M. Thompson
Chronic stress is thought to impart risk for depression via alterations in brain structure and function, but contributions of specific mediators in generating these changes remain unclear. We test the hypothesis that stress-induced increases in corticosterone (CORT), the primary rodent glucocorticoid, are the key mediator of stress-induced depressive-like behavioral changes and synaptic dysfunction in the rat hippocampus. In rats, we correlated changes in cognitive and affective behavioral tasks (spatial memory consolidation, anhedonia, and neohypophagia) with impaired excitatory strength at temporoammonic-CA1 (TA-CA1) synapses, an archetypical stress-sensitive excitatory synapse. We tested whether elevated CORT was sufficient and necessary to generate a depressive-like behavioral phenotype and decreased excitatory signaling observed at TA-CA1 after chronic unpredictable stress (CUS). Chronic CORT administration induced an anhedonia-like behavioral state and neohypophagic behavior. Like CUS, chronic, but not acute, CORT generated an impaired synaptic phenotype characterized by reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptor-mediated excitation at TA-CA1 synapses, decreased AMPA-type glutamate receptor subunit 1 protein expression, and altered serotonin-1B receptor-mediated potentiation. Repeatedly blunting stress-induced increases of CORT during CUS with the CORT synthesis inhibitor metyrapone (MET) prevented these stress-induced neurobehavioral changes. MET also prevented the CUS-induced impairment of spatial memory consolidation. We conclude that corticosterone is sufficient and necessary to mediate glutamatergic dysfunction underlying stress-induced synaptic and behavioral phenotypes. Our results indicate that chronic excessive glucocorticoids cause specific synaptic deficits in the hippocampus, a major center for cognitive and emotional processing, that accompany stress-induced behavioral dysfunction. Maintaining excitatory strength at stress-sensitive synapses at key loci throughout corticomesolimbic reward circuitry appears critical for maintaining normal cognitive and emotional behavior.
The International Journal of Neuropsychopharmacology | 2013
Monika Vinish; Ahmed Elnabawi; Jean A. Milstein; Jesse S. Burke; Jonathan K. Kallevang; Kevin C. Turek; Carien S. Lansink; Istvan Merchenthaler; Aileen M. Bailey; Bryan Kolb; Joseph F. Cheer; Douglas O. Frost
Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug (APD) treatment. Most APDs are potent antagonists or partial agonists of dopamine (DA) D₂ receptors; atypical APDs also have multiple serotonergic activities. DA and serotonin regulate many neurodevelopmental processes. Thus, early life APD treatment can, potentially, perturb these processes, causing long-term behavioural and neurobiological sequelae. We treated adolescent, male rats with olanzapine (Ola) on post-natal days 28-49, under dosing conditions that approximate those employed therapeutically in humans. As adults, they exhibited enhanced conditioned place preference for amphetamine, as compared to vehicle-treated rats. In the nucleus accumbens core, DA D₁ receptor binding was reduced, D₂ binding was increased and DA release evoked by electrical stimulation of the ventral tegmental area was reduced. Thus, adolescent Ola treatment enduringly alters a key behavioural response to rewarding stimuli and modifies DAergic neurotransmission in the nucleus accumbens. The persistence of these changes suggests that even limited periods of early life Ola treatment may induce enduring changes in other reward-related behaviours and in behavioural and neurobiological responses to therapeutic and illicit psychotropic drugs. These results underscore the importance of improved understanding of the enduring sequelae of paediatric APD treatment as a basis for weighing the benefits and risks of adolescent APD therapy, especially prophylactic treatment in high-risk, asymptomatic patients.
Brain Research | 2015
Patrick T. Piantadosi; Ashley Holmes; Bradley M. Roberts; Aileen M. Bailey
Cholinergic innervation of the prefrontal cortex is critical for various forms of cognition, although the efferent modulators contributing to acetylcholine (ACh) release are not well understood. The main source of cortical ACh, the basal forebrain, receives projections from lateral and perifornical hypothalamic neurons releasing the peptides orexin (orexin A; OxA, and orexin B; OxB), of which OxA is hypothesized to play a role in various cognitive functions. We sought to assess one such function known to be susceptible to basal forebrain cholinergic manipulation, olfactory discrimination acquisition, and reversal learning, in rats following intra-basal forebrain infusion of OxA or the orexin 1 receptor (OxR1) antagonist SB-334867. OxA administration facilitated, while OxR1 antagonism impaired performance on both the acquisition and reversal portions of the task. These data suggest that orexin acting in the basal forebrain may be important for cortical-dependant executive functions, possibly through the stimulation of cortical ACh release.
Behavioural Brain Research | 2013
Angy J. Kallarackal; J. Marc Simard; Aileen M. Bailey
Neurofibromatosis 1 (NF1) is a common genetic disorder known to cause a variety of physiological symptoms such as the formation of both benign and malignant tumors, and is also known to cause visuospatial learning deficits. Mouse models of NF1 show increased GTP activation of ras which may alter K+ channels. One candidate K+ channel that may contribute to deficits in NF1 is the SK (small conductance calcium-activated potassium) channel due to its role in regulation of long term potentiation (LTP), a mechanism of learning which has been shown to be impaired in Nf1(+/-) mice. We found that administration of apamin (SK antagonist) either through i.p. injection or micro-osmotic pump to Nf1(+/-) mice significantly improved performance on the water maze task in comparison to saline treated Nf1(+/-) mice on the third day of training and on the corresponding probe test. In this study we demonstrate a possible mechanism for the learning deficits seen in Nf1(+/-) mice and a possible drug therapy for rescuing these deficits.
Brain Research | 2007
Aileen M. Bailey; Jennifer M. Lee
Rats were first trained to acquire an olfactory discrimination learning set (ODLS) on 40 olfactory-unique discrimination problems. Following acquisition of ODLS, animals were lesioned bilaterally in the nucleus basalis magnocellularis (nBM) using either quisqualic acid (QUIS) or 192 IgG-saporin (SAP). QUIS animals performed significantly worse than control animals following surgery and SAP animals performed transiently worse than control animals. Despite lowered performances, both QUIS and SAP animals performed significantly better than expected by chance on trial 2 indicating retention of the ODLS previously acquired. Implications for the role of the nBM in aspects of cognitive flexibility and its role in acquisition versus retention are discussed.
Psychological Record | 2006
Aileen M. Bailey
Six male Sprague-Dawley rats were used to examine the long-term retention of an olfactory discrimination learning set. Rats were trained on 30 odor-unique, 5-trial discrimination problems, transferred to an olfactory discrimination reversal task, and then given a 6-week break in training. The rats demonstrated use of a learning set by performing significantly better than expected by chance on Trial 2 on both the olfactory discrimination problems and the olfactory discrimination reversal problems. Following the 6-week break in training, retention of learning set was tested using 20 new odor-unique discrimination problems. The rats again performed significantly better than expected by chance on Trial 2 in the retention test indicating they had retained the learning set.