Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aimée L. Fenwick is active.

Publication


Featured researches published by Aimée L. Fenwick.


Nature Genetics | 2013

Mutations in TCF12 , encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis

Vikram P Sharma; Aimée L. Fenwick; Mia S Brockop; Simon J. McGowan; Jacqueline A.C. Goos; A. Jeannette M. Hoogeboom; Angela F. Brady; Nu Owase Jeelani; Sally Ann Lynch; John B. Mulliken; Dylan J. Murray; Julie M Phipps; Elizabeth Sweeney; Susan Tomkins; Louise C. Wilson; Sophia Bennett; Richard J. Cornall; John Broxholme; Alexander Kanapin; David W. Johnson; Steven A. Wall; Peter J. van der Spek; Irene M.J. Mathijssen; Robert Maxson; Stephen R.F. Twigg; Andrew O.M. Wilkie

Craniosynostosis, the premature fusion of the cranial sutures, is a heterogeneous disorder with a prevalence of ∼1 in 2,200 (refs. 1,2). A specific genetic etiology can be identified in ∼21% of cases, including mutations of TWIST1, which encodes a class II basic helix-loop-helix (bHLH) transcription factor, and causes Saethre-Chotzen syndrome, typically associated with coronal synostosis. Using exome sequencing, we identified 38 heterozygous TCF12 mutations in 347 samples from unrelated individuals with craniosynostosis. The mutations predominantly occurred in individuals with coronal synostosis and accounted for 32% and 10% of subjects with bilateral and unilateral pathology, respectively. TCF12 encodes one of three class I E proteins that heterodimerize with class II bHLH proteins such as TWIST1. We show that TCF12 and TWIST1 act synergistically in a transactivation assay and that mice doubly heterozygous for loss-of-function mutations in Tcf12 and Twist1 have severe coronal synostosis. Hence, the dosage of TCF12-TWIST1 heterodimers is critical for normal coronal suture development.


Nature Genetics | 2013

Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis

Stephen R.F. Twigg; Elena Vorgia; Simon J. McGowan; Aimée L. Fenwick; Vikram P Sharma; Maryline Allegra; Andreas Zaragkoulias; Elham Sadighi Akha; Samantha J. L. Knight; Helen Lord; Tracy Lester; Louise Izatt; Anne K Lampe; Shehla Mohammed; Fiona Stewart; Alain Verloes; Louise C. Wilson; Chris Healy; Paul T. Sharpe; Peter Hammond; Jim R. Hughes; Stephen Taylor; David Johnson; Steven A. Wall; George Mavrothalassitis; Andrew O.M. Wilkie

The extracellular signal–related kinases 1 and 2 (ERK1/2) are key proteins mediating mitogen-activated protein kinase signaling downstream of RAS: phosphorylation of ERK1/2 leads to nuclear uptake and modulation of multiple targets. Here, we show that reduced dosage of ERF, which encodes an inhibitory ETS transcription factor directly bound by ERK1/2 (refs. 2,3,4,5,6,7), causes complex craniosynostosis (premature fusion of the cranial sutures) in humans and mice. Features of this newly recognized clinical disorder include multiple-suture synostosis, craniofacial dysmorphism, Chiari malformation and language delay. Mice with functional Erf levels reduced to ∼30% of normal exhibit postnatal multiple-suture synostosis; by contrast, embryonic calvarial development appears mildly delayed. Using chromatin immunoprecipitation in mouse embryonic fibroblasts and high-throughput sequencing, we find that ERF binds preferentially to elements away from promoters that contain RUNX or AP-1 motifs. This work identifies ERF as a novel regulator of osteogenic stimulation by RAS-ERK signaling, potentially by competing with activating ETS factors in multifactor transcriptional complexes.


American Journal of Human Genetics | 2011

Inactivation of IL11 Signaling Causes Craniosynostosis, Delayed Tooth Eruption, and Supernumerary Teeth

Pekka Nieminen; Neil V. Morgan; Aimée L. Fenwick; Satu Parmanen; Lotta Veistinen; Marja L. Mikkola; Peter J. van der Spek; Andrew S. Giraud; Louise M. Judd; Sirpa Arte; Louise Brueton; Steven A. Wall; Irene M.J. Mathijssen; Eamonn R. Maher; Andrew O.M. Wilkie; Sven Kreiborg; Irma Thesleff

Craniosynostosis and supernumerary teeth most often occur as isolated developmental anomalies, but they are also separately manifested in several malformation syndromes. Here, we describe a human syndrome featuring craniosynostosis, maxillary hypoplasia, delayed tooth eruption, and supernumerary teeth. We performed homozygosity mapping in three unrelated consanguineous Pakistani families and localized the syndrome to a region in chromosome 9. Mutational analysis of candidate genes in the region revealed that all affected children harbored homozygous missense mutations (c.662C>G [p.Pro221Arg], c.734C>G [p.Ser245Cys], or c.886C>T [p.Arg296Trp]) in IL11RA (encoding interleukin 11 receptor, alpha) on chromosome 9p13.3. In addition, a homozygous nonsense mutation, c.475C>T (p.Gln159X), and a homozygous duplication, c.916_924dup (p.Thr306_Ser308dup), were observed in two north European families. In cell-transfection experiments, the p.Arg296Trp mutation rendered the receptor unable to mediate the IL11 signal, indicating that the mutation causes loss of IL11RA function. We also observed disturbed cranial growth and suture activity in the Il11ra null mutant mice, in which reduced size and remodeling of limb bones has been previously described. We conclude that IL11 signaling is essential for the normal development of craniofacial bones and teeth and that its function is to restrict suture fusion and tooth number. The results open up the possibility of modulation of IL11 signaling for the treatment of craniosynostosis.


American Journal of Human Genetics | 2016

Mutations in CDC45, Encoding an Essential Component of the Pre-initiation Complex, Cause Meier-Gorlin Syndrome and Craniosynostosis

Aimée L. Fenwick; Maciej Kliszczak; Fay Cooper; Jennie E. Murray; Luis Sanchez-Pulido; Stephen R.F. Twigg; Anne Goriely; Simon J. McGowan; Kerry A. Miller; Indira B. Taylor; Clare V. Logan; Sevcan Tug Bozdogan; Sumita Danda; J. Dixon; Solaf M. Elsayed; Ezzat Elsobky; Alice Gardham; Mariëtte J.V. Hoffer; Marije Koopmans; Donna M. McDonald-McGinn; Gijs W.E. Santen; Ravi Savarirayan; Deepthi De Silva; Olivier Vanakker; Steven A. Wall; Louise C. Wilson; Ozge Ozalp Yuregir; Elaine H. Zackai; Chris P. Ponting; Andrew P. Jackson

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.


Journal of Medical Genetics | 2017

Diagnostic value of exome and whole genome sequencing in craniosynostosis

Kerry A. Miller; Stephen R.F. Twigg; Simon J. McGowan; Julie M Phipps; Aimée L. Fenwick; David D. Johnson; Steven A. Wall; Peter Noons; Katie E.M. K.E.M. Rees; Elizabeth A. E.A. Tidey; Judith Craft; John J. Taylor; Jenny C. Taylor; Jacqueline A.C. Goos; Sigrid Swagemakers; Irene M.J. Mathijssen; Peter J. van der Spek; Helen Lord; Kathryn J. Lester; Noina Abid; Deirdre Cilliers; Jane Hurst; Jenny J. Morton; Elizabeth Sweeney; Astrid Weber; Louise C. Wilson; Andrew O.M. Wilkie

Background Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing. Methods We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative. Results We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). Conclusions This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.


BMC Medical Genetics | 2012

Frank-ter Haar syndrome associated with sagittal craniosynostosis and raised intracranial pressure

Charlotte L. Bendon; Aimée L. Fenwick; Jane Hurst; Gudrun Nürnberg; Peter Nürnberg; Steven A. Wall; Andrew O.M. Wilkie; David Johnson

BackgroundFrank-ter Haar syndrome is a rare disorder associated with skeletal, cardiac, ocular and craniofacial features including hypertelorism and brachycephaly. The most common underlying genetic defect in Frank-ter Haar syndrome appears to be a mutation in the SH3PXD2B gene on chromosome 5q35.1. Craniosynostosis, or premature fusion of the calvarial sutures, has not previously been described in Frank-ter Haar syndrome.Case presentationWe present a family of three affected siblings born to consanguineous parents with clinical features in keeping with a diagnosis of Frank-ter Haar syndrome. All three siblings have a novel mutation caused by the deletion of exon 13 of the SH3PXD2B gene. Two of the three siblings also have non-scaphocephalic sagittal synostosis associated with raised intracranial pressure.ConclusionThe clinical features of craniosynostosis and raised intracranial pressure in this family with a confirmed diagnosis of Frank-ter Haar syndrome expand the clinical spectrum of the disease. The abnormal cranial proportions in a mouse model of the disease suggests that the association is not coincidental. The possibility of craniosynostosis should be considered in individuals with a suspected diagnosis of Frank-ter Haar syndrome.


BMC Medical Genetics | 2011

A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome

Aimée L. Fenwick; Sarah C Bowdin; Regan Em Klatt; Andrew O.M. Wilkie

BackgroundSignalling by fibroblast growth factor receptor type 2 (FGFR2) normally involves a tissue-specific alternative splice choice between two exons (IIIb and IIIc), which generates two receptor isoforms (FGFR2b and FGFR2c respectively) with differing repertoires of FGF-binding specificity. Here we describe a unique chimeric IIIb/c exon in a patient with Apert syndrome, generated by a non-allelic homologous recombination event.Case PresentationWe present a child with Apert syndrome in whom routine genetic testing had excluded the FGFR2 missense mutations commonly associated with this disorder. The patient was found to harbour a heterozygous 1372 bp deletion between FGFR2 exons IIIb and IIIc, apparently originating from recombination between 13 bp of identical DNA sequence present in both exons. The rearrangement was not present in the unaffected parents.ConclusionsBased on the known pathogenesis of Apert syndrome, the chimeric FGFR2 protein is predicted to act in a dominant gain-of-function manner. This is likely to result from its expression in mesenchymal tissues, where retention of most of the residues essential for FGFR2b binding activity would result in autocrine activation. This report adds to the repertoire of rare cases of Apert syndrome for which a pathogenesis based on atypical FGFR2 rearrangements can be demonstrated.


The Journal of Pediatrics | 2013

Homozygous SALL1 Mutation Causes a Novel Multiple Congenital Anomaly—Mental Retardation Syndrome

Julia Vodopiutz; Heinz Zoller; Aimée L. Fenwick; Richard Arnhold; Max Schmid; Daniela Prayer; Thomas Müller; Andreas Repa; Arnold Pollak; Christoph Aufricht; Andrew O.M. Wilkie; Andreas R. Janecke

Objective To delineate a novel autosomal recessive multiple congenital anomaly-mental retardation (MCA-MR) syndrome in 2 female siblings of a consanguineous pedigree and to identify the disease-causing mutation. Study design Both siblings were clinically characterized and homozygosity mapping and sequencing of candidate genes were applied. The contribution of nonsense-mediated messenger RNA (mRNA) decay to the expression of mutant mRNA in fibroblasts of a healthy carrier and a control was studied by pyrosequencing. Results We identified the first homozygous SALL1 mutation, c.3160C > T (p.R1054*), in 2 female siblings presenting with multiple congenital anomalies, central nervous system defects, cortical blindness, and absence of psychomotor development (ie, a novel recognizable, autosomal recessive MCA-MR). The mutant SALL1 transcript partially undergoes nonsense-mediated mRNA decay and is present at 43% of the normal transcript level in the fibroblasts of a healthy carrier. Conclusion Previously heterozygous SALL1 mutations and deletions have been associated with dominantly inherited anal-renal-radial-ear developmental anomalies. We identified an allelic recessive SALL1-related MCA-MR. Our findings imply that quantity and quality of SALL1 transcript are important for SALL1 function and determine phenotype, and mode of inheritance, of allelic SALL1-related disorders. This novel MCA-MR emphasizes SALL1 function as critical for normal central nervous system development and warrants a detailed neurologic investigation in all individuals with SALL1 mutations.


American Journal of Medical Genetics Part A | 2015

TCF12 microdeletion in a 72-year-old woman with intellectual disability.

Juliette Piard; Virginie Rozé; Alain Czorny; Marion Lenoir; Mylène Valduga; Aimée L. Fenwick; Andrew O.M. Wilkie; Lionel Van Maldergem

Heterozygous mutations in TCF12 were recently identified as an important cause of craniosynostosis. In the original series, 14% of patients with a mutation in TCF12 had significant developmental delay or learning disability. We report on the first case of TCF12 microdeletion, detected by array‐comparative genomic hybridization, in a 72‐year‐old patient presenting with intellectual deficiency and dysmorphism. Multiplex ligation‐dependent probe amplification analysis indicated that exon 19, encoding the functionally important basic helix‐loop‐helix domain, was included in the deleted segment in addition to exon 20. We postulate that the TCF12 microdeletion is responsible for this patients intellectual deficiency and facial phenotype.


BMC Medical Genetics | 2014

Apparently synonymous substitutions in FGFR2 affect splicing and result in mild Crouzon syndrome

Aimée L. Fenwick; Jacqueline A.C. Goos; Julia Rankin; Helen Lord; Tracy Lester; A. Jeannette M. Hoogeboom; Ans van den Ouweland; Steven A. Wall; Irene M.J. Mathijssen; Andrew O.M. Wilkie

BackgroundMutations of fibroblast growth factor receptor 2 (FGFR2) account for a higher proportion of genetic cases of craniosynostosis than any other gene, and are associated with a wide spectrum of severity of clinical problems. Many of these mutations are highly recurrent and their associated features well documented. Crouzon syndrome is typically caused by heterozygous missense mutations in the third immunoglobulin domain of FGFR2.Case presentationHere we describe two families, each segregating a different, previously unreported FGFR2 mutation of the same nucleotide, c.1083A>G and c.1083A>T, both of which encode an apparently synonymous change at the Pro361 codon. We provide experimental evidence that these mutations affect normal FGFR2 splicing and document the clinical consequences, which include a mild Crouzon syndrome phenotype and reduced penetrance of craniosynostosis.ConclusionsThese observations add to a growing list of FGFR2 mutations that affect splicing and provide important clinical information for genetic counselling of families affected by these specific mutations.

Collaboration


Dive into the Aimée L. Fenwick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise C. Wilson

Great Ormond Street Hospital for Children NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline A.C. Goos

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Sweeney

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge