Aimee Lee S. Houde
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aimee Lee S. Houde.
Heredity | 2013
Aimee Lee S. Houde; Chris C. Wilson; Bryan D. Neff
The additive genetic effects of traits can be used to predict evolutionary trajectories, such as responses to selection. Non-additive genetic and maternal environmental effects can also change evolutionary trajectories and influence phenotypes, but these effects have received less attention by researchers. We partitioned the phenotypic variance of survival and fitness-related traits into additive genetic, non-additive genetic and maternal environmental effects using a full-factorial breeding design within two allopatric populations of Atlantic salmon (Salmo salar). Maternal environmental effects were large at early life stages, but decreased during development, with non-additive genetic effects being most significant at later juvenile stages (alevin and fry). Non-additive genetic effects were also, on average, larger than additive genetic effects. The populations, generally, did not differ in the trait values or inferred genetic architecture of the traits. Any differences between the populations for trait values could be explained by maternal environmental effects. We discuss whether the similarities in architectures of these populations is the result of natural selection across a common juvenile environment.
Conservation Biology | 2014
Njal Rollinson; Dave M. Keith; Aimee Lee S. Houde; Paul V. Debes; Meghan C. McBride; Jeffrey A. Hutchings
Captive-breeding programs can be implemented to preserve the genetic diversity of endangered populations such that the controlled release of captive-bred individuals into the wild may promote recovery. A common difficulty, however, is that programs are founded with limited wild broodstock, and inbreeding can become increasingly difficult to avoid with successive generations in captivity. Program managers must choose between maintaining the genetic purity of populations, at the risk of inbreeding depression, or interbreeding populations, at the risk of outbreeding depression. We evaluate these relative risks in a captive-breeding program for 3 endangered populations of Atlantic salmon (Salmo salar). In each of 2 years, we released juvenile F(1) and F(2) interpopulation hybrids, backcrosses, as well as inbred and noninbred within-population crosstypes into 9 wild streams. Juvenile size and survival was quantified in each year. Few crosstype effects were observed, but interestingly, the relative fitness consequences of inbreeding and outbreeding varied from year to year. Temporal variation in environmental quality might have driven some of these annual differences, by exacerbating the importance of maternal effects on juvenile fitness in a year of low environmental quality and by affecting the severity of inbreeding depression differently in different years. Nonetheless, inbreeding was more consistently associated with a negative effect on fitness, whereas the consequences of outbreeding were less predictable. Considering the challenges associated with a sound risk assessment in the wild and given that the effect of inbreeding on fitness is relatively predictable, we suggest that risk can be weighted more strongly in terms of the probable outcome of outbreeding. Factors such as genetic similarities between populations and the number of generations in isolation can sometimes be used to assess outbreeding risk, in lieu of experimentation.
Ecology and Evolution | 2016
Aimee Lee S. Houde; Trevor E. Pitcher
Abstract Full factorial breeding designs are useful for quantifying the amount of additive genetic, nonadditive genetic, and maternal variance that explain phenotypic traits. Such variance estimates are important for examining evolutionary potential. Traditionally, full factorial mating designs have been analyzed using a two‐way analysis of variance, which may produce negative variance values and is not suited for unbalanced designs. Mixed‐effects models do not produce negative variance values and are suited for unbalanced designs. However, extracting the variance components, calculating significance values, and estimating confidence intervals and/or power values for the components are not straightforward using traditional analytic methods. We introduce fullfact – an R package that addresses these issues and facilitates the analysis of full factorial mating designs with mixed‐effects models. Here, we summarize the functions of the fullfact package. The observed data functions extract the variance explained by random and fixed effects and provide their significance. We then calculate the additive genetic, nonadditive genetic, and maternal variance components explaining the phenotype. In particular, we integrate nonnormal error structures for estimating these components for nonnormal data types. The resampled data functions are used to produce bootstrap‐t confidence intervals, which can then be plotted using a simple function. We explore the fullfact package through a worked example. This package will facilitate the analyses of full factorial mating designs in R, especially for the analysis of binary, proportion, and/or count data types and for the ability to incorporate additional random and fixed effects and power analyses.
Transactions of The American Fisheries Society | 2015
Aimee Lee S. Houde; Chris C. Wilson; Bryan D. Neff
AbstractThe presence of ecologically similar nonnative species may impede recovery efforts for native species. We assessed the survival and growth of juvenile Atlantic Salmon Salmo salar from three populations (LaHave River, Sebago Lake, and Lac Saint-Jean) in the presence of four naturalized nonnative salmonid competitors. The three populations are being used for reintroduction efforts in Lake Ontario, where Atlantic Salmon are extirpated. Juvenile Atlantic Salmon were placed into artificial stream tanks with combinations of juvenile Brown Trout S. trutta, Rainbow Trout Oncorhynchus mykiss, Chinook Salmon O. tshawytscha, and Coho Salmon O. kisutch. Survival of all three Atlantic Salmon populations was lower in the presence of Brown Trout; growth was lower in the Brown Trout treatment and in the multispecies treatment. In contrast, Atlantic Salmon survival and growth were not negatively impacted by the presence of Chinook Salmon, Rainbow Trout, or Coho Salmon. Based on measurements of circulating hormones...
Journal of Fish Biology | 2015
Aimee Lee S. Houde; Chris C. Wilson; Bryan D. Neff
Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects.
Oecologia | 2017
A. D. Smith; Aimee Lee S. Houde; Bryan D. Neff; Pedro R. Peres-Neto
While interspecific competition is prevalent in natural systems, we do not yet understand how it can influence an individual’s phenotype within its lifetime and how this might affect performance. Morphology and swimming performance are two important fitness-related traits in fishes. Both traits are essential in acquiring and defending resources as well as avoiding predation. Here, we examined if interspecific competition could induce changes in morphology and affect the swimming performance of two strains of juvenile Atlantic salmon (Salmo salar). We imposed competitive scenarios on the fish using artificial streams containing different combinations of four interspecific competitors. Exposure to interspecific competitors induced morphological changes over time, through the development of deeper bodies, whereas controls free of interspecific competitors developed more fusiform body shapes. Furthermore, swimming performance was correlated to fusiform morphologies and was weaker for Atlantic salmon in competitive scenarios vs. controls. This implies that interspecific competition has direct effects on these fitness-related traits in Atlantic salmon. To the best of our knowledge, this is the first time that morphology, an important fitness-related trait linked to swimming performance, has been shown to be negatively impacted through interactions with an interspecific competitor.
Ecology and Evolution | 2018
Xiaoping He; Aimee Lee S. Houde; Bryan D. Neff; Daniel D. Heath
Abstract Non‐native species may be introduced either intentionally or unintentionally, and their impact can range from benign to highly disruptive. Non‐native salmonids were introduced into Lake Ontario, Canada, to provide recreational fishing opportunities; however, the establishment of those species has been proposed as a significant barrier to the reintroduction of native Atlantic salmon (Salmo salar) due to intense interspecific competition. In this study, we compared population differences of Atlantic salmon in transcriptome response to interspecific competition. We reared Atlantic salmon from two populations (LaHave River and Sebago Lake) with fish of each of three non‐native salmonids (Chinook salmon Oncorhynchus tshawytscha, rainbow trout O. mykiss, and brown trout S. trutta) in artificial streams. We used RNA‐seq to assess transcriptome differences between the Atlantic salmon populations and the responses of these populations to the interspecific competition treatments after 10 months of competition in the stream tanks. We found that population differences in gene expression were generally greater than the effects of interspecific competition. Interestingly, we found that the two Atlantic salmon populations exhibited similar responses to interspecific competition based on functional gene ontologies, but the specific genes within those ontologies were different. Our transcriptome analyses suggest that the most stressful competitor (as measured by the highest number of differentially expressed genes) differs between the two study populations. Our transcriptome characterization highlights the importance of source population selection for conservation applications, as organisms with different evolutionary histories can possess different transcriptional responses to the same biotic stressors. The results also indicate that generalized predictions of the response of native species to interactions with introduced species may not be appropriate without incorporating potential population‐specific response to introduced species.
Heredity | 2017
X He; Aimee Lee S. Houde; T E Pitcher; Daniel D. Heath
Gene expression regulation has an important role in short-term acclimation and long-term adaptation to changing environments. However, the genetic architecture of gene expression has received much less attention than that of traditional phenotypic traits. In this study, we used a 5 × 5 full-factorial breeding design within each of two Atlantic salmon (Salmo salar) populations to characterize the genetic architecture of gene transcription. The two populations (LaHave and Sebago) are being used for reintroduction efforts into Lake Ontario, Canada. We used high-throughput quantitative real-time PCR to measure gene transcription levels for 22 genes in muscle tissue of Atlantic salmon fry. We tested for population differences in gene transcription and partitioned the transcription variance into additive genetic, non-additive genetic and maternal effects within each population. Interestingly, average additive genetic effects for gene transcription were smaller than those reported for traditional phenotypic traits in salmonids, suggesting that the evolutionary potential of gene transcription is lower than that of traditional traits. Contrary to expectations for early life stage traits, maternal effects were small. In general, the LaHave population had higher additive genetic effects for gene transcription than the Sebago population had, indicating that the LaHave fish have a higher adaptive potential to respond to the novel selection pressures associated with reintroduction into a novel environment. This study highlights not only the profound variation in gene transcription possible among salmonid populations but also the among-population variation in the underlying genetic architecture of such traits.
Journal of Fish Biology | 2016
Aimee Lee S. Houde; Chris C. Wilson; Trevor E. Pitcher
The influences of additive, non-additive and maternal effects on early survival (uneyed embryo survival, eyed embryo survival, alevin survival and overall survival to first feeding) were quantified in lake trout Salvelinus namaycush using a 7 × 7 full-factorial breeding design. Maternal effects followed by non-additive genetic effects explained around one third of the phenotypic variance of the survival traits. Although the amount of additive genetic effects were low (<1%), suggesting a limited potential of the traits to respond to new selection pressures, how maternal and non-additive genetic effects may respond to selection under certain circumstances are discussed.
Ecology of Freshwater Fish | 2015
Aimee Lee S. Houde; Chris C. Wilson; Bryan D. Neff