Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aimo Ruokonen is active.

Publication


Featured researches published by Aimo Ruokonen.


Nature Genetics | 2009

Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts

Yurii S. Aulchenko; Samuli Ripatti; Ida Lindqvist; Dorret I. Boomsma; Iris M. Heid; Peter P. Pramstaller; Brenda W.J.H. Penninx; A. Cecile J. W. Janssens; James F. Wilson; Tim D. Spector; Nicholas G. Martin; Nancy L. Pedersen; Kirsten Ohm Kyvik; Jaakko Kaprio; Albert Hofman; Nelson B. Freimer; Marjo-Riitta Järvelin; Ulf Gyllensten; Harry Campbell; Igor Rudan; Åsa Johansson; Fabio Marroni; Caroline Hayward; Veronique Vitart; Inger Jonasson; Cristian Pattaro; Alan F. Wright; Nicholas D. Hastie; Irene Pichler; Andrew A. Hicks

Recent genome-wide association (GWA) studies of lipids have been conducted in samples ascertained for other phenotypes, particularly diabetes. Here we report the first GWA analysis of loci affecting total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides sampled randomly from 16 population-based cohorts and genotyped using mainly the Illumina HumanHap300-Duo platform. Our study included a total of 17,797–22,562 persons, aged 18–104 years and from geographic regions spanning from the Nordic countries to Southern Europe. We established 22 loci associated with serum lipid levels at a genome-wide significance level (P < 5 × 10−8), including 16 loci that were identified by previous GWA studies. The six newly identified loci in our cohort samples are ABCG5 (TC, P = 1.5 × 10−11; LDL, P = 2.6 × 10−10), TMEM57 (TC, P = 5.4 × 10−10), CTCF-PRMT8 region (HDL, P = 8.3 × 10−16), DNAH11 (LDL, P = 6.1 × 10−9), FADS3-FADS2 (TC, P = 1.5 × 10−10; LDL, P = 4.4 × 10−13) and MADD-FOLH1 region (HDL, P = 6 × 10−11). For three loci, effect sizes differed significantly by sex. Genetic risk scores based on lipid loci explain up to 4.8% of variation in lipids and were also associated with increased intima media thickness (P = 0.001) and coronary heart disease incidence (P = 0.04). The genetic risk score improves the screening of high-risk groups of dyslipidemia over classical risk factors.


Nature Genetics | 2009

Genome-wide association analysis of metabolic traits in a birth cohort from a founder population.

Chiara Sabatti; Anna-Liisa Hartikainen; Anneli Pouta; Samuli Ripatti; Jae Brodsky; Christopher Jones; Noah Zaitlen; Teppo Varilo; Marika Kaakinen; Ulla Sovio; Aimo Ruokonen; Jaana Laitinen; Eveliina Jakkula; Lachlan Coin; Clive J. Hoggart; Andrew Collins; Hannu Turunen; Stacey Gabriel; Paul Elliot; Mark I. McCarthy; Mark J. Daly; Marjo-Riitta Järvelin; Nelson B. Freimer; Leena Peltonen

Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene–environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.


JAMA | 2009

Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease.

Paul Elliott; John Campbell Chambers; Weihua Zhang; Robert Clarke; Jemma C. Hopewell; John F. Peden; Jeanette Erdmann; Peter S. Braund; James C. Engert; Derrick Bennett; Lachlan Coin; Deborah Ashby; Ioanna Tzoulaki; Ian J. Brown; Shahrul Mt-Isa; Mark McCarthy; Leena Peltonen; Nelson B. Freimer; Martin Farrall; Aimo Ruokonen; Anders Hamsten; Noha Lim; Philippe Froguel; Dawn M. Waterworth; Peter Vollenweider; Gérard Waeber; Marjo-Riitta Järvelin; Vincent Mooser; James Scott; Alistair S. Hall

CONTEXT Plasma levels of C-reactive protein (CRP) are independently associated with risk of coronary heart disease, but whether CRP is causally associated with coronary heart disease or merely a marker of underlying atherosclerosis is uncertain. OBJECTIVE To investigate association of genetic loci with CRP levels and risk of coronary heart disease. DESIGN, SETTING, AND PARTICIPANTS We first carried out a genome-wide association (n = 17,967) and replication study (n = 13,615) to identify genetic loci associated with plasma CRP concentrations. Data collection took place between 1989 and 2008 and genotyping between 2003 and 2008. We carried out a mendelian randomization study of the most closely associated single-nucleotide polymorphism (SNP) in the CRP locus and published data on other CRP variants involving a total of 28,112 cases and 100,823 controls, to investigate the association of CRP variants with coronary heart disease. We compared our finding with that predicted from meta-analysis of observational studies of CRP levels and risk of coronary heart disease. For the other loci associated with CRP levels, we selected the most closely associated SNP for testing against coronary heart disease among 14,365 cases and 32,069 controls. MAIN OUTCOME MEASURE Risk of coronary heart disease. RESULTS Polymorphisms in 5 genetic loci were strongly associated with CRP levels (% difference per minor allele): SNP rs6700896 in LEPR (-14.8%; 95% confidence interval [CI], -17.6% to -12.0%; P = 6.2 x 10(-22)), rs4537545 in IL6R (-11.5%; 95% CI, -14.4% to -8.5%; P = 1.3 x 10(-12)), rs7553007 in the CRP locus (-20.7%; 95% CI, -23.4% to -17.9%; P = 1.3 x 10(-38)), rs1183910 in HNF1A (-13.8%; 95% CI, -16.6% to -10.9%; P = 1.9 x 10(-18)), and rs4420638 in APOE-CI-CII (-21.8%; 95% CI, -25.3% to -18.1%; P = 8.1 x 10(-26)). Association of SNP rs7553007 in the CRP locus with coronary heart disease gave an odds ratio (OR) of 0.98 (95% CI, 0.94 to 1.01) per 20% lower CRP level. Our mendelian randomization study of variants in the CRP locus showed no association with coronary heart disease: OR, 1.00; 95% CI, 0.97 to 1.02; per 20% lower CRP level, compared with OR, 0.94; 95% CI, 0.94 to 0.95; predicted from meta-analysis of the observational studies of CRP levels and coronary heart disease (z score, -3.45; P < .001). SNPs rs6700896 in LEPR (OR, 1.06; 95% CI, 1.02 to 1.09; per minor allele), rs4537545 in IL6R (OR, 0.94; 95% CI, 0.91 to 0.97), and rs4420638 in the APOE-CI-CII cluster (OR, 1.16; 95% CI, 1.12 to 1.21) were all associated with risk of coronary heart disease. CONCLUSION The lack of concordance between the effect on coronary heart disease risk of CRP genotypes and CRP levels argues against a causal association of CRP with coronary heart disease.


Nature Genetics | 2009

A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk

Nabila Bouatia-Naji; Amélie Bonnefond; Christine Cavalcanti-Proença; Thomas Sparsø; Johan Holmkvist; Marion Marchand; Jérôme Delplanque; Stéphane Lobbens; Ghislain Rocheleau; Emmanuelle Durand; Franck De Graeve; Jean-Claude Chèvre; Knut Borch-Johnsen; Anna-Liisa Hartikainen; Aimo Ruokonen; Jean Tichet; Michel Marre; Jacques Weill; Barbara Heude; Maithe Tauber; Katleen Lemaire; Frans Schuit; Paul Elliott; Torben Jørgensen; Guillaume Charpentier; Samy Hadjadj; Stéphane Cauchi; Martine Vaxillaire; Robert Sladek; Sophie Visvikis-Siest

In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 × 10−7). In European populations, the rs1387153 T allele is associated with increased FPG (β = 0.06 mmol/l, P = 7.6 × 10−29, N = 16,094), type 2 diabetes (T2D) risk (odds ratio (OR) = 1.15, 95% CI = 1.08–1.22, P = 6.3 × 10−5, cases N = 6,332) and risk of developing hyperglycemia or diabetes over a 9-year period (hazard ratio (HR) = 1.20, 95% CI = 1.06–1.36, P = 0.005, incident cases N = 515). RT-PCR analyses confirm the presence of MT2 transcripts in neural tissues and show MT2 expression in human pancreatic islets and beta cells. Our data suggest a possible link between circadian rhythm regulation and glucose homeostasis through the melatonin signaling pathway.


Nature Genetics | 2009

Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

Johan Rung; Stéphane Cauchi; Anders Albrechtsen; Lishuang Shen; Ghislain Rocheleau; Christine Cavalcanti-Proença; Francois Bacot; Beverley Balkau; Alexandre Belisle; Knut Borch-Johnsen; Guillaume Charpentier; Christian Dina; Emmanuelle Durand; Paul Elliott; Samy Hadjadj; Marjo-Riitta Järvelin; Jaana Laitinen; Torsten Lauritzen; Michel Marre; Alexander Mazur; D Meyre; Alexandre Montpetit; Charlotta Pisinger; Barry I. Posner; Pernille Poulsen; Anneli Pouta; Marc Prentki; Rasmus Ribel-Madsen; Aimo Ruokonen; Anelli Sandbaek

Genome-wide association studies have identified common variants that only partially explain the genetic risk for type 2 diabetes (T2D). Using genome-wide association data from 1,376 French individuals, we identified 16,360 SNPs nominally associated with T2D and studied these SNPs in an independent sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 × 10−12, OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies.


PLOS Genetics | 2008

A genome-wide association study identifies protein quantitative trait loci (pQTLs)

David Melzer; John Perry; Dena Hernandez; Annamaria Corsi; K Stevens; Ian Rafferty; F. Lauretani; Anna Murray; J. Raphael Gibbs; Giuseppe Paolisso; Sajjad Rafiq; Javier Simón-Sánchez; Hana Lango; Sonja W. Scholz; Michael N. Weedon; Sampath Arepalli; Neil Rice; Nicole Washecka; Alison J. Hurst; Angela Britton; William Henley; Joyce van de Leemput; Rongling Li; Anne B. Newman; Greg Tranah; Tamara B. Harris; Vijay Panicker; Colin Mark Dayan; Amanda J. Bennett; Mark I. McCarthy

There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts – cis effects, and elsewhere in the genome – trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10−57), CCL4L1 (p = 3.9×10−21), IL18 (p = 6.8×10−13), LPA (p = 4.4×10−10), GGT1 (p = 1.5×10−7), SHBG (p = 3.1×10−7), CRP (p = 6.4×10−6) and IL1RN (p = 7.3×10−6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10−40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways.


Diabetes | 2008

Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected, given its effect on BMI

Rachel M. Freathy; Nicholas J. Timpson; Debbie A. Lawlor; Anneli Pouta; Yoav Ben-Shlomo; Aimo Ruokonen; Shah Ebrahim; Beverley M. Shields; Eleftheria Zeggini; Michael N. Weedon; Cecilia M. Lindgren; Hana Lango; David Melzer; Luigi Ferrucci; Giuseppe Paolisso; Matthew J. Neville; Fredrik Karpe; Colin N. A. Palmer; Andrew D. Morris; Paul Elliott; Marjo-Riitta Järvelin; George Davey Smith; Mark McCarthy; Andrew T. Hattersley; Timothy M. Frayling

OBJECTIVE—Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits. RESEARCH DESIGN AND METHODS—We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations. RESULTS—Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013–0.064]; P = 0.003), glucose (0.024 [0.001–0.048]; P = 0.044), and triglycerides (0.028 [0.003–0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008–0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, γ-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P < 0.05. For all metabolic traits, effect sizes were consistent with those expected for the per allele change in BMI. FTO genotype was associated with a higher odds of metabolic syndrome (odds ratio 1.17 [95% CI 1.10–1.25]; P = 3 × 10−6). CONCLUSIONS—FTO genotype is associated with metabolic traits to an extent entirely consistent with its effect on BMI. Sample sizes of >12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.


The Journal of Clinical Endocrinology and Metabolism | 2009

Perinatal outcome of children born to mothers with thyroid dysfunction or antibodies: a prospective population-based cohort study.

Tuija Männistö; Marja Vääräsmäki; Anneli Pouta; Anna-Liisa Hartikainen; Aimo Ruokonen; Heljä-Marja Surcel; Aini Bloigu; Marjo-Riitta Järvelin; Eila Suvanto-Luukkonen

CONTEXT There are only a few large prospective studies involving evaluation of the effect of maternal thyroid dysfunction on offspring and observations are inconsistent. OBJECTIVE The objective of the study was to investigate the effects of thyroid dysfunction or antibody positivity on perinatal outcome. SETTING AND PARTICIPANTS The study included prospective population-based Northern Finland Birth Cohort 1986 including 9247 singleton pregnancies. First-trimester maternal serum samples were analyzed for thyroid hormones [TSH, free T(4) (fT4)] and antibodies [thyroid-peroxidase antibody (TPO-Ab) and thyroglobulin antibody (TG-Ab)]. Mothers were classified by their hormone and antibody status into percentile categories based on laboratory data and compared accordingly. MAIN OUTCOMES Outcomes were perinatal mortality, preterm delivery, absolute and gestational age-adjusted birth weight, and absolute and relative placental weight. RESULTS The offspring of TPO-Ab- and TG-Ab-positive mothers had higher perinatal mortality, which was not affected by thyroid hormone status. Unadjusted and adjusted (for maternal age and parity) risk for increased perinatal mortality was an odds ratio of 3.1 (95% confidence interval 1.4-7.1) and 3.2 (1.4-7.1) in TPO-Ab- and 2.6 (1.1-6.2) and 2.5 (1.1-5.9) in TG-Ab-positive mothers. TPO-Ab-positive mothers had more large-for-gestational age infants (2.4 vs. 0.8%, P = 0.017), as did mothers with low TSH and high fT4 concentrations vs. reference group (6.6 vs. 2.5%, P = 0.045). Significantly higher placental weights were observed among mothers with low TSH and high fT4 or high TSH and low fT4 levels as well as among TPO-Ab-positive mothers. CONCLUSIONS First-trimester antibody positivity is a risk factor for perinatal death but not thyroid hormone status as such. Thyroid dysfunction early in pregnancy seems to affect fetal and placental growth.


Nature Genetics | 2009

Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels

John Chambers; Weihua Zhang; Yun Li; Joban Sehmi; Mark N. Wass; Delilah Zabaneh; Clive J. Hoggart; Henry K. Bayele; Mark McCarthy; Leena Peltonen; Nelson B. Freimer; Surjit Kaila Srai; Patrick H. Maxwell; Michael J. E. Sternberg; Aimo Ruokonen; Gonçalo R. Abecasis; Marjo-Riitta Järvelin; James Scott; Paul Elliott; Jaspal S. Kooner

We carried out a genome-wide association study of hemoglobin levels in 16,001 individuals of European and Indian Asian ancestry. The most closely associated SNP (rs855791) results in nonsynonymous (V736A) change in the serine protease domain of TMPRSS6 and a blood hemoglobin concentration 0.13 (95% CI 0.09–0.17) g/dl lower per copy of allele A (P = 1.6 × 10−13). Our findings suggest that TMPRSS6, a regulator of hepcidin synthesis and iron handling, is crucial in hemoglobin level maintenance.


PLOS Genetics | 2012

A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation

Andrea D. Coviello; Robin Haring; Melissa F. Wellons; Dhananjay Vaidya; Terho Lehtimäki; Sarah Keildson; Kathryn L. Lunetta; Chunyan He; Myriam Fornage; Vasiliki Lagou; Massimo Mangino; N. Charlotte Onland-Moret; Brian H. Chen; Joel Eriksson; Melissa Garcia; Yongmei Liu; Annemarie Koster; Kurt Lohman; Leo-Pekka Lyytikäinen; Ann Kristin Petersen; Jennifer Prescott; Lisette Stolk; Liesbeth Vandenput; Andrew R. Wood; Wei Vivian Zhuang; Aimo Ruokonen; Anna Liisa Hartikainen; Anneli Pouta; Stefania Bandinelli; Reiner Biffar

Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10−106), PRMT6 (rs17496332, 1p13.3, p = 1.4×10−11), GCKR (rs780093, 2p23.3, p = 2.2×10−16), ZBTB10 (rs440837, 8q21.13, p = 3.4×10−09), JMJD1C (rs7910927, 10q21.3, p = 6.1×10−35), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10−08), NR2F2 (rs8023580, 15q26.2, p = 8.3×10−12), ZNF652 (rs2411984, 17q21.32, p = 3.5×10−14), TDGF3 (rs1573036, Xq22.3, p = 4.1×10−14), LHCGR (rs10454142, 2p16.3, p = 1.3×10−07), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10−08), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10−06). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10−08, women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.

Collaboration


Dive into the Aimo Ruokonen's collaboration.

Top Co-Authors

Avatar

Anneli Pouta

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulla Sovio

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Katri Puukka

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul Elliott

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Aini Bloigu

National Institute for Health and Welfare

View shared research outputs
Researchain Logo
Decentralizing Knowledge