Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ainhoa Bilbao is active.

Publication


Featured researches published by Ainhoa Bilbao.


Biology of Reproduction | 2008

Long-Term Effects of Mouse Intracytoplasmic Sperm Injection with DNA-Fragmented Sperm on Health and Behavior of Adult Offspring

Raúl Fernández-González; Pedro Moreira; Miriam Pérez-Crespo; Manuel Sánchez-Martín; M. A. Ramírez; Eva Pericuesta; Ainhoa Bilbao; Pablo Bermejo-Alvarez; Juan de Dios Hourcade; Fernando Rodríguez de Fonseca; Alfonso Gutierrez-Adan

Abstract Genetic and environmental factors produce different levels of DNA damage in spermatozoa. Usually, DNA-fragmented spermatozoa (DFS) are used with intracytoplasmic sperm injection (ICSI) treatments in human reproduction, and use of DFS is still a matter of concern. The purpose of the present study was to investigate the long-term consequences on development and behavior of mice generated by ICSI with DFS. Using CD1 and B6D2F1 mouse strains, oocytes were injected with fresh spermatozoa or with frozen-thawed spermatozoa without cryoprotector. This treatment increased the percentage of TUNEL-positive spermatozoa, tail length as measured by comet assay, and loss of telomeres as measured by quantitative PCR. The ICSI-generated embryos were cultured for 24 h in KSOM, and 2-cell embryos were transferred into CD1 females. The DFS reduced both the rate of preimplantation embryo development and number of offspring. Immunofluorescence staining with an antibody against 5-methylcytosine showed a delay of 2 h on the active demethylation of male pronucleus in the embryos produced by ICSI. Moreover, ICSI affected gene transcription and methylation of some epigenetically regulated genes like imprinting, X-linked genes, and retrotransposon genes. At 3 and 12 mo of age, ICSI with DFS-produced animals and in vivo-fertilized controls were submitted to behavioral tests: locomotor activity (open field), exploratory/anxiety behavior (elevated plus maze, open field), and spatial memory (free-choice exploration paradigm in Y maze). Females produced by ICSI showed increased anxiety, lack of habituation pattern, deficit in short-term spatial memory, and age-dependent hypolocomotion in the open-field test (P < 0.05). Postnatal weight gain of mice produced by ICSI with fresh or frozen sperm was higher than that of their control counterparts from 16 wk on (P < 0.01). Anatomopathological analysis of animals at 16 mo of age showed some large organs and an increase in pathologies (33% of CD1 females produced with DFS presented some solid tumors in lungs and dermis of back or neck). Moreover, 20% of the B6D2F1 mice generated with DFS died during the first 5 mo of life, with 25% of the surviving animals showing premature aging symptoms, and 70% of the B6D2F1 mice generated with DFS died earlier than controls with different kind of tumors. We propose that depending on the level of DFS, oocytes may partially repair fragmented DNA, producing blastocysts able to implant and produce live offspring. The incomplete repair, however, may lead to long-term pathologies. Our data indicate that use of DFS in ICSI can generate effects that only emerge during later life, such as aberrant growth, premature aging, abnormal behavior, and mesenchymal tumors.


Neuron | 2008

Glutamate receptors on dopamine neurons control the persistence of cocaine seeking

David Engblom; Ainhoa Bilbao; Carles Sanchis-Segura; Lionel Dahan; Stéphanie Perreau-Lenz; Bénédicte Balland; Jan Rodriguez Parkitna; Rafael Luján; Briac Halbout; Manuel Mameli; Rosanna Parlato; Rolf Sprengel; Christian Lüscher; Günther Schütz; Rainer Spanagel

Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits selectively in dopamine neurons. We report that in midbrain slices of cocaine-treated mice, synaptic transmission was no longer strengthened when GluR1 or NR1 was abolished, while in the respective mice the drug still induced normal conditioned place preference and locomotor sensitization. In contrast, extinction of drug-seeking behavior was absent in mice lacking GluR1, while in the NR1 mutant mice reinstatement was abolished. In conclusion, cocaine-evoked synaptic plasticity does not mediate concurrent short-term behavioral effects of the drug but may initiate adaptive changes eventually leading to the persistence of drug-seeking behavior.


Neuropsychopharmacology | 2008

Expression and Function of CB1 Receptor in the Rat Striatum: Localization and Effects on D1 and D2 Dopamine Receptor-Mediated Motor Behaviors

Ana B. Martín; Emilio Fernández-Espejo; Belén Ferrer; Miguel Angel Gorriti; Ainhoa Bilbao; Miguel Navarro; Fernando Rodríguez de Fonseca; Rosario Moratalla

Cannabinoid CB1 receptors are densely expressed on striatal projection neurons expressing dopamine D1 or D2 receptors. However, the specific neuronal distribution of CB1 receptors within the striatum is not known. Previous research has established that the endocannabinoid system controls facilitation of behavior by dopamine D2 receptors, but it is not clear if endocannabinoids also modulate D1 receptor-mediated motor behavior. In the present study, we show that cannabinoid CB1 receptor mRNA is present in striatonigral neurons expressing substance P and dopamine D1 receptors, as well as in striatopallidal neurons expressing enkephalin and dopamine D2 receptors. We explored the functional relevance of the interaction between dopamine D1 and D2 receptors and cannabinoid CB1 receptors with behavioral pharmacology experiments. Potentiation of endogenous cannabinoid signaling by the uptake blocker AM404 blocked dopamine D1 receptor-mediated grooming and D2 receptor-mediated oral stereotypies. In addition, contralateral turning induced by unilateral intrastriatal infusion of D1 receptor agonists is counteracted by AM404 and potentiated by the cannabinoid antagonist SR141716A. These results indicate that the endocannabinoid system negatively modulates D1 receptor-mediated behaviors in addition to its previously described effect on dopamine D2 receptor-mediated behaviors. The effect of AM404 on grooming behavior was absent in dopamine D1 receptor knockout mice, demonstrating its dependence on D1 receptors. This study indicates that the endocannabinoid system is a relevant negative modulator of both dopamine D1 and D2 receptor-mediated behaviors, a finding that may contribute to our understanding of basal ganglia motor disorders.


European Journal of Neuroscience | 2005

Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of ethanol-seeking behavior in rats

Andrea Cippitelli; Ainhoa Bilbao; Anita C. Hansson; Ignacio del Arco; Wolfgang Sommer; Markus Heilig; Mauricio Massi; Francisco Javier Bermúdez‐Silva; Miguel Navarro; Roberto Ciccocioppo; Fernando Rodríguez de Fonseca

The endocannabinoid system is involved in a variety of effects of drugs of misuse, and blockade of the cannabinoid CB1 receptor by selective antagonists elicits marked reductions in opioid and alcohol self‐administration. The present study was designed to extend our knowledge of the role of the cannabinoid CB1 receptor in the modulation of alcohol misuse vulnerability in rats. Accordingly, using nonselected Wistar rats and genetically selected Marchigian Sardinian alcohol‐preferring (msP) rats, we investigated the effect of the CB1 antagonist SR141716A on operant alcohol self‐administration and on reinstatement of alcohol‐seeking behavior by environmental conditioning factors. In addition, in situ hybridization studies in both strains were performed to measure cannabinoid CB1 receptor mRNA in different brain areas of these animals. Results showed that intraperitoneal administration of SR141716A (0.03, 1.0 and 3.0 mg/kg) markedly inhibits ethanol self‐administration and conditioned reinstatement of ethanol‐seeking behavior in both strains of rats. ED50 analysis showed significantly higher sensitivity (P < 0.05) to the effect of SR141716A in msP rats than in heterogeneous Wistar rats. In situ hybridization studies revealed that, compared with Wistar rats, msP animals have consistently greater cannabinoid CB1 receptor mRNA expression in a number of brain areas, including the frontoparietal cortex, caudate‐putamen and hippocampus (CA1 and dentate gyrus areas). In conclusion, we provide clear evidence that blockade of CB1 receptors reduces both ethanol self‐administration and conditioned reinstatement of alcohol‐seeking behavior in rats. In addition, current pharmacological and neuroanatomical data suggest that an altered function of the CB1 receptor system exists between genetically selected alcohol‐preferring msP rats and a heterogeneous animal population.


Neuropharmacology | 2006

Antiobesity effects of the novel in vivo neutral cannabinoid receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole - LH 21

Francisco Javier Pavón; Ainhoa Bilbao; Laura Hernandez-Folgado; Andrea Cippitelli; Nadine Jagerovic; Gumersindo Abellán; Ma Isabel Rodríguez-Franco; Antonia Serrano; Manuel Macias; Raquel Paredes Gómez; Miguel Navarro; Pilar Goya; Fernando Rodríguez de Fonseca

The present study evaluates the pharmacological profile of the new neutral cannabinoid CB1 receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole -LH-21- on feeding behavior and alcohol self-administration in rats, two behaviors inhibited by cannabinoid CB1 receptor antagonists. Administration of LH-21 (0.03, 0.3 and 3 mg/kg) to food-deprived rats resulted in a dose-dependent inhibition of feeding. Subchronic administration of LH-21 reduced food intake and body weight gain in obese Zucker rats. Acute effects on feeding were not associated with anxiety-like behaviors, or induction of complex motor behaviors such as grooming or scratching sequences, usually observed after central administration of cannabinoid receptor blockers with inverse agonist properties. LH-21 did not markedly reduce alcohol self-administration (30% reduction observed only at a high dose of 10 mg/kg). This pharmacological pattern partially overlaps that of the reference cannabinoid CB1 receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide, SR141716A, (0.3, 1 and 3 mg/kg) that reduced feeding and alcohol self-administration with similar efficacy. In vitro analysis of blood-brain barrier permeability using a parallel artificial membrane permeation assay demonstrated that LH-21 has lower permeation through membranes than SR141716A. That was confirmed in vivo by studies showing lower potency of peripherally injected LH-21 when compared to SR141716A to antagonize motor depression induced by intracerebroventricular administration of the CB1 agonist CP55,940. The neutral antagonist profile and the lower penetration into the brain of LH-21 favour this class of antagonists with respect to reference inverse agonists for the treatment of obesity because they potentially will display reduced side effects.


Pain | 2007

Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain

Margarita Suardíaz; Guillermo Estivill-Torrús; Carlos Goicoechea; Ainhoa Bilbao; Fernando Rodríguez de Fonseca

Abstract Oleoylethanolamide (OEA) is a natural fatty acid amide that mainly modulates feeding and energy homeostasis by binding to peroxisome proliferator‐activated receptor‐alpha (PPAR‐α) [Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Navas F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature 2001;414:209–12; Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F, et al. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR‐α. Nature 2003;425:90–3]. Additionally, it has been proposed that OEA could act via other receptors, including the vanilloid receptor (TRPV1) [Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short‐term food intake in mice via capsaicin receptor TRPV1. J Physiol 2005;564:541–7.] or the GPR119 receptor [Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, et al. Deorphanization of a G protein‐coupled receptor for oleoylethanolamide and its use in the discovery of small‐molecule hypophagic agents. Cell Metab 2006;3:167–175], suggesting that OEA might subserve other physiological roles, including pain perception. We have evaluated the effect of OEA in two types of nociceptive responses evoked by visceral and inflammatory pain in rodents. Our results suggest that OEA has analgesic properties reducing the nociceptive responses produced by administration of acetic acid and formalin in two experimental animal models. Additional research was performed to investigate the mechanisms underlying this analgesic effect. To this end, we evaluated the actions of OEA in mice null for the PPAR‐α receptor gene and compared its actions with those of PPAR‐α receptor wild‐type animal. We also compared the effect of MK‐801 in order to evaluate the role of NMDA receptor in this analgesia. Our data showed that OEA reduced visceral and inflammatory responses through a PPAR‐α‐activation independent mechanism. Co‐administration of subanalgesic doses of MK‐801 and OEA produced an analgesic effect, suggesting the participation of glutamatergic transmission in the antinociceptive effect of OEA. This study represents a novel approach to the examination of the effectiveness of OEA in nociceptive responses and provides a framework for understanding its biological functions and endogenous targets in visceral and inflammatory pain.


American Journal of Psychiatry | 2011

Effects of the Circadian Rhythm Gene Period 1 (Per1) on Psychosocial Stress-Induced Alcohol Drinking

Li Dong; Ainhoa Bilbao; Manfred Laucht; Richard Henriksson; Tatjana Yakovleva; Monika Ridinger; Sylvane Desrivières; Toni-Kim Clarke; Anbarasu Lourdusamy; Michael N. Smolka; Sven Cichon; Dorothea Blomeyer; Stéphanie Perreau-Lenz; Stephanie H. Witt; Fernando Leonardi-Essmann; Norbert Wodarz; Peter Zill; Michael Soyka; Urs Albrecht; Marcella Rietschel; Mark Lathrop; Georgy Bakalkin; Rainer Spanagel; Gunter Schumann

OBJECTIVE Circadian and stress-response systems mediate environmental changes that affect alcohol drinking. Psychosocial stress is an environmental risk factor for alcohol abuse. Circadian rhythm gene period 1 (Per1) is targeted by stress hormones and is transcriptionally activated in corticotropin releasing factor-expressing cells. The authors hypothesized that Per1 is involved in integrating stress response and circadian rhythmicity and explored its relevance to alcohol drinking. METHOD In mice, the effects of stress on ethanol intake in mPer1-mutant and wild-type mice were assessed. In humans, single nucleotide polymorphisms (SNPs) in hPer1 were tested for association with alcohol drinking behavior in 273 adolescents and an adult case-control sample of 1,006 alcohol-dependent patients and 1,178 comparison subjects. In vitro experiments were conducted to measure genotype-specific expression and transcription factor binding to hPer1. RESULTS The mPer1-mutant mice showed enhanced alcohol consumption in response to social defeat stress relative to their wild-type littermates. An association with the frequency of heavy drinking in adolescents with the hPer1 promoter SNP rs3027172 and with psychosocial adversity was found. There was significant interaction between the rs3027172 genotype and psychosocial adversity on this drinking measure. In a confirmatory analysis, association of hPer1 rs3027172 with alcohol dependence was shown. Cortisol-induced transcriptional activation of hPer1 was reduced in human B-lymphoblastoid cells carrying the risk genotype of rs3027172. Binding affinity of the transcription factor Snail1 to the risk allele of the hPer1 SNP rs3027172 was also reduced. CONCLUSIONS The findings indicate that the hPer1 gene regulates alcohol drinking behavior during stressful conditions and provide evidence for underlying neurobiological mechanisms.


Biochemical Journal | 2007

Regulation of brain anandamide by acute administration of ethanol

Belén Ferrer; Francisco Javier Bermúdez-Silva; Ainhoa Bilbao; Lily Alvarez-Jaimes; Irene Sanchez-Vera; Andrea Giuffrida; Antonia Serrano; Elena Baixeras; Satishe Khaturia; Miguel Navarro; Loren H. Parsons; Daniele Piomelli; Fernando Rodríguez de Fonseca

The endogenous cannabinoid acylethanolamide AEA (arachidonoylethanolamide; also known as anandamide) participates in the neuroadaptations associated with chronic ethanol exposure. However, no studies have described the acute actions of ethanol on AEA production and degradation. In the present study, we investigated the time course of the effects of the intraperitoneal administration of ethanol (4 g/kg of body mass) on the endogenous levels of AEA in central and peripheral tissues. Acute ethanol administration decreased AEA in the cerebellum, the hippocampus and the nucleus accumbens of the ventral striatum, as well as in plasma and adipose tissue. Parallel decreases of a second acylethanolamide, PEA (palmitoylethanolamide), were observed in the brain. Effects were observed 45-90 min after ethanol administration. In vivo studies revealed that AEA decreases were associated with a remarkable inhibition of the release of both anandamide and glutamate in the nucleus accumbens. There were no changes in the expression and enzymatic activity of the main enzyme that degrades AEA, the fatty acid amidohydrolase. Acute ethanol administration did not change either the activity of N-acyltransferase, the enzyme that catalyses the synthesis of the AEA precursor, or the expression of NAPE-PLD (N-acylphosphatidylethanolamine-hydrolysing phospholipase D), the enzyme that releases AEA from membrane phospholipid precursors. These results suggest that receptor-mediated release of acylethanolamide is inhibited by the acute administration of ethanol, and that this effect is not derived from increased fatty acid ethanolamide degradation.


Alcohol | 2014

The alcohol deprivation effect model for studying relapse behavior: A comparison between rats and mice

Valentina Vengeliene; Ainhoa Bilbao; Rainer Spanagel

Understanding the psychological mechanisms and underlying neurobiology of relapse behavior is essential for improving the treatment of addiction. Because the neurobiology of relapse behavior cannot be well studied in patients, we must rely on appropriate animal models. The alcohol deprivation effect (ADE) is a phenomenon in laboratory animals that models a relapse-like drinking situation, providing excellent face and predictive validity. In rodents, relapse-like behavior is largely influenced by the genetic make-up of an animal. It is not clear which other factors are responsible for variability of this behavior, but there seems to be no correlation between levels of baseline alcohol intake and the occurrence, duration, and robustness of the ADE. Rats that undergo long-term alcohol drinking for several months with repeated deprivation phases develop a compulsive drinking behavior during a relapse situation, characterized by insensitivity to taste adulteration with quinine, a loss of circadian drinking patterns during relapse-like drinking, and a shift toward drinking highly concentrated alcohol solutions to rapidly increase blood alcohol concentrations and achieve intoxication. Some mouse strains also exhibit an ADE, but this is usually of shorter duration than in rats. However, compulsive drinking in mice during a relapse situation has yet to be demonstrated. We extend our review section with original data showing that during long-term alcohol consumption, mice show a decline in alcohol intake, and the ADE fades with repeated deprivation phases. Furthermore, anti-relapse compounds that produce reliable effects on the ADE in rats produce paradoxical effects in mice. We conclude that the rat provides a better model system to study alcohol relapse and putative anti-relapse compounds.


European Journal of Neuroscience | 2007

The anandamide transport inhibitor AM404 reduces ethanol self-administration

Andrea Cippitelli; Ainhoa Bilbao; Miguel Angel Gorriti; Miguel Navarro; Maurizio Massi; Daniele Piomelli; Roberto Ciccocioppo; Fernando Rodríguez de Fonseca

The endocannabinoid system mediates in the pharmacological actions of ethanol and genetic studies link endocannabinoid signaling to alcoholism. Drugs activating cannabinoid CB1 receptors have been found to promote alcohol consumption but their effects on self‐administration of alcohol are less clear because of the interference with motor performance. To avoid this problem, a novel pharmacological approach to the study of the contribution of the cannabinoid system in alcoholism may be to use drugs that locally amplify the effects of alcohol on endogenous cannabinoids. In the present study we addressed this model by studying the effects of the anandamide transport inhibitor N‐(4‐hydroxyphenyl) arachidonoyl‐ethanolamide (AM404) on both ethanol self‐administration and reinstatement of alcohol‐seeking behavior in rats. The results show that AM404 significantly reduced ethanol self‐administration in a dose‐dependent manner but failed to modify reinstatement for lever pressing induced by the stimulus associated with alcohol. This effect was not due to a motor depressant effect and was not related to a decrease in general motivational state, as it was not effective in other reward paradigms such as lever pressing for a saccharin solution. The mechanism of action of AM404 does not involve cannabinoid CB1 receptors as the CB1‐selective antagonist SR141716A did not block the reduction of ethanol self‐administration induced by the anandamide uptake blocker. Moreover, 3‐(1,1‐dimethylheptyl)‐(–)‐11‐hydroxy‐delta 8‐tetrahydrocannabinol (HU‐210), a classical cannabinoid receptor agonist, did not affect ethanol self‐administration. The effects of AM404 are not mediated by either vanilloid VR1 receptors or cannabinoid CB2 receptors because it is not antagonized by either the VR1 receptor antagonist capsazepine or the CB2 antagonist AM630. These results indicate that AM404 may be considered as an innovative approach to reduce alcohol consumption.

Collaboration


Dive into the Ainhoa Bilbao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Navarro

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günther Schütz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge