Ainong Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ainong Li.
The Scientific World Journal | 2013
Junhong Bai; Baoshan Cui; Huicong Cao; Ainong Li; Baiyu Zhang
Wetlands are among the most important ecosystems on earth and functioned as the “kidneys” of the earth, which play an important role in maintaining ecological service functions. However, with the rapid growth in human populations, wetlands worldwide are suffering from serious degradation or loss as affected by wetland pollution, wetland reclamation, civilization and land use changes, and so forth. Wetland degradation has potential influences on human health, biodiversity, regional climate, and regional ecological security. Therefore, it is an urgent task to recover these degraded wetlands. In recent years, wetland protection, restoration, and its reasonable exploitation have been paid much more attention to by most governments and researchers. Moreover, wetland restoration has become the frontier fields of wetlands science, which has been listed as one of important themes in these recent international wetlands and ecological conferences. Understanding wetland degradation processes can contribute to better effective wetland restoration. Therefore, we organized this special issue on “wetland degradation and ecological restoration.” The objective of this special issue is to emphasize the effects of human activities on wetland ecosystems, the relationships between soil, water, and plant in wetlands, and wetland restoration issues and applications.
Photogrammetric Engineering and Remote Sensing | 2007
Ainong Li; Shunlin Liang; Angsheng Wang; Jun Qin
Accurate, objective, reliable, and timely predictions of crop yield over large areas are critical to helping ensure the adequacy of a nation’s food supply and aiding policy makers on import/export plans and prices. Development of objective mathematical models of crop yield prediction using remote sensing is highly desirable. In this study, we develop a new methodology using an artificial neural network (ANN) to estimate and predict corn and soybean yields on a county-by-county basis, in the “corn belt” area in the Midwestern and Great Plains regions of the United States. The historical yield data and long time-series NDVI derived from AVHRR and MODIS are used to develop the models. A new procedure is developed to train the ANN model using the SCE-UA optimization algorithm. The performance of ANN models is compared with multivariate linear regression (MLR) models and validation is made on the model’s stability and forecasting ability. The new algorithms can effectively train ANN models, and the prediction accuracy can be as high as 85 percent.
Remote Sensing | 2013
Wei Zhang; Ainong Li; Huaan Jin; Jinhu Bian; Zhengjian Zhang; Guangbin Lei; Zhihao Qin; Chengquan Huang
Remotely sensed data, with high spatial and temporal resolutions, can hardly be provided by only one sensor due to the tradeoff in sensor designs that balance spatial resolutions and temporal coverage. However, they are urgently needed for improving the ability of monitoring rapid landscape changes at fine scales (e.g., 30 m). One approach to acquire them is by fusing observations from sensors with different characteristics (e.g., Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS)). The existing data fusion algorithms, such as the Spatial and Temporal Data Fusion Model (STDFM), have achieved some significant progress in this field. This paper puts forward an Enhanced Spatial and Temporal Data Fusion Model (ESTDFM) based on the STDFM algorithm, by introducing a patch-based ISODATA classification method, the sliding window technology, and the temporal-weight concept. Time-series ETM+ and MODIS surface reflectance are used as test data for comparing the two algorithms. Results show that the prediction ability of the ESTDFM algorithm has been significantly improved, and is even more satisfactory in the near-infrared band (the contrasting average absolute difference [AAD]: 0.0167 vs. 0.0265). The enhanced algorithm will support subsequent research on monitoring land surface dynamic changes at finer scales.
Remote Sensing | 2012
Ainong Li; Jinhu Bian; Guangbin Lei; Chengquan Huang
Maximal light use efficiency (LUE) is an important ecological index of a vegetation essential attribute, and a key parameter of the LUE-based model for estimating large-scale vegetation productivity by remote sensing technology. However, although currently used in different models there still exists extensive controversy. This paper takes the Zoige Plateau in China as a case area to develop a new approach for estimating the maximal LUEs for different vegetation. Based on an existing land cover map and MODIS NDVI product, the linear unmixing method with a moving window was adopted to estimate the time-series NDVI for different end members in a MODIS NDVI pixel; then Particle Swarm Optimizer (PSO) was applied to search for the optimization of LUE retrievals through the CASA (Carnegie-Ames-Stanford Approach) model combined with time-series NDVI and ground measurements. The derived maximal LUEs present significant differences among various vegetation types. These are 0.669 gC.MJ(-1), 0.450 gC.MJ(-1) and 0.126 gC.MJ(-1) for the xerophilous grasslands with high, moderate and low vegetation fraction respectively, 0.192 gC.MJ(-1) for the hygrophilous grasslands, and 0.125 gC.MJ(-1) for the helobious grasslands. The field validation shows that the estimated net primary productivity (NPP) by the derived maximal LUE is closely related to the ground references, with R-2 of 0.8698 and root-mean-square error (RMSE) of 59.37 gC.m(-2).a(-1). This indicates that the default set in the CASA model is not suitable for NPP estimation for the regional mountain area. The derived maximal LUEs can significantly improve the capability of NPP mapping, and open up the perspective for long-term monitoring of vegetation ecological health and ecosystem productivity by combining the LUE-based model with remote sensing observations.
Journal of Mountain Science | 2013
Junhong Bai; Qiongqiong Lu; Junjing Wang; Qingqing Zhao; Hua Ouyang; Wei Deng; Ainong Li
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau. The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades. The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986. The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes. Meanwhile, the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands. The modification processes mainly occurred among natural wetland landscapes in the first three periods. Obvious conversions were observed between wetland and non-wetland landscapes (i.e., forestland, grassland, and other landscapes) in the Zoige Plateau. These natural wetland landscapes such as river, lake and marsh wetlands showed a net loss over the past four decades, whereas artificial wetland landscapes (i.e., paddy field and reservoir and pond wetlands) showed a net decrease. The annual dynamic rate of the whole wetland landscape was 0.72%, in which the annual dynamic rate of river wetlands was the highest, followed by lake wetlands, while marsh wetlands had the lowest dynamic rate. The integrated landscape dynamic rate showed a decreasing trend in the first three periods. The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities, especially human activities play an important role in changing wetland landscape patterns.
Journal of Mountain Science | 2013
Jinhu Bian; Ainong Li; Huaan Jin; Guangbin Lei; Chengquan Huang; Meng-xue Li
How to deal with geometric distortion is an open problem when using the massive amount of satellite images at a national or global scale, especially for multi-temporal image analysis. In this paper, an algorithm is proposed to automatically rectify the geometric distortion of time-series CCD multispectral data of small constellation for environmental and disaster mitigation (HJ-1A/B) which was launched by China in 2008. In this algorithm, the area-based matching method was used to automatically search tie points firstly, and then the polynomial function was introduced to correct the systematic errors caused by the satellite motion along the roll, pitch and yaw direction. The improved orthorectification method was finally used to correct pixel displacement caused by off-nadir viewing of topography, which are random errors in the images and cannot be corrected by the polynomial equation. Nine scenes of level 2 HJ CCD images from one path/row were taken as the warp images to test the algorithm. The test result showed that the overall accuracy of the proposed algorithm was within 2 pixels (the average residuals were 37.8 m, and standard deviations were 19.8 m). The accuracies of 45.96% validation points (VPs) were within 1 pixel and 90.33% VPs were within 2 pixels. The discussion showed that three main factors including the distortion patterns of HJ CCD images, percent of cloud cover and the varying altitude of the satellite orbit may affect the search of tie points and the accuracy of results. Although the influence of varying altitude of the satellite orbits is less than the other factors, it is noted that detailed satellite altitude information should be given in the future to get a more precise result. The proposed algorithm should be an efficient tool for the geo-correction of HJ CCD multi-spectral images.
Remote Sensing | 2010
Ainong Li; Wei Deng; Shunlin Liang; Chengquan Huang
The pattern of vegetation change in response to global change still remains a controversial issue. A Normalized Difference Vegetation Index (NDVI) dataset compiled by the Global Inventory Modeling and Mapping Studies (GIMMS) was used for analysis. For the period 1982-2006, GIMMS-NDVI analysis indicated that monthly NDVI changes show homogenous trends in middle and high latitude areas in the northern hemisphere and within, or near, the Tropic of Cancer and Capricorn; with obvious spatio-temporal heterogeneity on a global scale over the past two decades. The former areas featured increasing vegetation activity during growth seasons, and the latter areas experienced an even greater amplitude in places where precipitation is adequate. The discussion suggests that one should be cautious of using the NDVI time-series to analyze local vegetation dynamics because of its coarse resolution and uncertainties.
Remote Sensing | 2015
Jinhu Bian; Ainong Li; Qingfang Wang; Chengquan Huang
Time series remote sensing products with both fine spatial and dense temporal resolutions are urgently needed for many earth system studies. The development of small satellite constellations with identical sensors affords novel opportunities to provide such kind of earth observations. In this paper, a new dense time series 30-m image product was proposed respectively based on an 8-day, 16-day and monthly composition. The products were composited by the Charge Coupled Device (CCD) images from the 2-day revisit small satellite constellation for environmental monitoring and disaster mitigation of China (HJ-1A/B). Taking the Zoige plateau in China as a case area where it is covered by highly heterogeneous vegetation landscapes, a detailed methodology was introduced on how to use 183 scenes of CCD images in 2010 to create composite products. The quality of the HJ CCD composites was evaluated by inter-comparison with the monthly 30-m global Web-Enabled Landsat Data (WELD), 16-day 500-m MODIS NDVI, and 8-day 500-m MODIS surface reflectance products. Results showed that the radiometric consistency between HJ and WELD composited Top Of Atmosphere (TOA) reflectance was in good agreement except for May, June, July and August when more clouds and invalid data gaps appeared in WELD. Visual assessment and temporal profile analysis also revealed that HJ possessed better visual effects and temporal coherence than that of WELD. The comparison between HJ and MODIS products indicated that HJ composites were radiometrically consistent with MODIS products over areas consisting of large patches of homogeneous surface types, but can better reflect the detailed spatial differences in regions with heterogeneous landscapes. This paper highlights the potential of compositing HJ-1A/B CCD images, allowing for providing a cloud free, time-space consistent, 30-m spatial resolution, and dense in time series image product. Meanwhile, the proposed products could also be treated as a reference to generate regional or even global composited products for the on-going satellite constellations and even for the forthcoming satellite missions such as Sentinel-2A/B.
Remote Sensing | 2015
Ainong Li; Qingfang Wang; Jinhu Bian; Guangbin Lei
Optical remotely sensed images in mountainous areas are subject to radiometric distortions induced by topographic effects, which need to be corrected before quantitative applications. Based on Li model and Sandmeier model, this paper proposed an improved physics-based model for the topographic correction of Landsat Thematic Mapper (TM) images. The model employed Normalized Difference Vegetation Index (NDVI) thresholds to approximately divide land targets into eleven groups, due to NDVIs lower sensitivity to topography and its significant role in indicating land cover type. Within each group of terrestrial targets, corresponding MODIS BRDF (Bidirectional Reflectance Distribution Function) products were used to account for land surfaces BRDF effect, and topographic effects are corrected without Lambertian assumption. The methodology was tested with two TM scenes of severely rugged mountain areas acquired under different sun elevation angles. Results demonstrated that reflectance of sun-averted slopes was evidently enhanced, and the overall quality of images was improved with topographic effect being effectively suppressed. Correlation coefficients between Near Infra-Red band reflectance and illumination condition reduced almost to zero, and coefficients of variance also showed some reduction. By comparison with the other two physics-based models (Sandmeier model and Li model), the proposed model showed favorable results on two tested Landsat scenes. With the almost half-century accumulation of Landsat data and the successive launch and operation of Landsat 8, the improved model in this paper can be potentially helpful for the topographic correction of Landsat and Landsat-like data.
Remote Sensing | 2016
Guangbin Lei; Ainong Li; Jinhu Bian; Zhengjian Zhang; Huaan Jin; Xi Nan; Wei Zhao; Jiyan Wang; Xiaomin Cao; Jianbo Tan; Qiannan Liu; Huan Yu; Guangbin Yang; Wenlan Feng
Land cover mapping in mountainous areas is a notoriously challenging task due to the rugged terrain and high spatial heterogeneity of land surfaces as well as the frequent cloud contamination of satellite imagery. Taking Southwestern China (a typical mountainous region) as an example, this paper established a new HC-MMK approach (Hierarchical Classification based on Multi-source and Multi-temporal data and geo-Knowledge), which was especially designed for land cover mapping in mountainous areas. This approach was taken in order to generate a 30 m-resolution land cover product in Southwestern China in 2010 (hereinafter referred to as CLC-SW2010). The multi-temporal native HJ (HuanJing, small satellite constellation for disaster and environmental monitoring) CCD (Charge-Coupled Device) images, Landsat TM (Thematic Mapper) images and topographical data (including elevation, aspect, slope, etc.) were taken as the main input data sources. Hierarchical classification tree construction and a five-step knowledge-based interactive quality control were the major components of this proposed approach. The CLC-SW2010 product contained six primary categories and 38 secondary categories, which covered about 2.33 million km(2) (accounting for about a quarter of the land area of China). The accuracies of primary and secondary categories for CLC-SW2010 reached 95.09% and 87.14%, respectively, which were assessed independently by a third-party group. This product has so far been used to estimate the terrestrial carbon stocks and assess the quality of the ecological environments. The proposed HC-MMK approach could be used not only in mountainous areas, but also for plains, hills and other regions. Meanwhile, this study could also be used as a reference for other land cover mapping projects over large areas or even the entire globe.