Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Airlie J. McCoy is active.

Publication


Featured researches published by Airlie J. McCoy.


Acta Crystallographica Section D-biological Crystallography | 2010

PHENIX: a comprehensive Python-based system for macromolecular structure solution

Paul D. Adams; Pavel V. Afonine; Gábor Bunkóczi; Vincent B. Chen; Ian W. Davis; Nathaniel Echols; Jeffrey J. Headd; Li-Wei Hung; Gary J. Kapral; Ralf W. Grosse-Kunstleve; Airlie J. McCoy; Nigel W. Moriarty; Robert D. Oeffner; Randy J. Read; David C. Richardson; Jane S. Richardson; Thomas C. Terwilliger; Peter H. Zwart

The PHENIX software for macromolecular structure determination is described.


Journal of Applied Crystallography | 2007

Phaser crystallographic software

Airlie J. McCoy; Ralf W. Grosse-Kunstleve; Paul D. Adams; Martyn Winn; Laurent C. Storoni; Randy J. Read

A description is given of Phaser-2.1: software for phasing macromolecular crystal structures by molecular replacement and single-wavelength anomalous dispersion phasing.


Acta Crystallographica Section D-biological Crystallography | 2011

Overview of the CCP4 suite and current developments

Winn; Charles Ballard; Kevin Cowtan; Eleanor J. Dodson; Paul Emsley; Phil Evans; Ronan Keegan; Eugene Krissinel; Andrew G. W. Leslie; Airlie J. McCoy; Stuart McNicholas; Garib N. Murshudov; Navraj S. Pannu; Elizabeth Potterton; Harold R. Powell; Randy J. Read; A.A. Vagin; Keith S. Wilson

An overview of the CCP4 software suite for macromolecular crystallography is given.


Acta Crystallographica Section D-biological Crystallography | 2002

PHENIX: building new software for automated crystallographic structure determination

Paul D. Adams; Ralf W. Grosse-Kunstleve; Li-Wei Hung; Thomas R. Ioerger; Airlie J. McCoy; Nigel W. Moriarty; Randy J. Read; James C. Sacchettini; Nicholas K. Sauter; Thomas C. Terwilliger

Structural genomics seeks to expand rapidly the number of protein structures in order to extract the maximum amount of information from genomic sequence databases. The advent of several large-scale projects worldwide leads to many new challenges in the field of crystallographic macromolecular structure determination. A novel software package called PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) is therefore being developed. This new software will provide the necessary algorithms to proceed from reduced intensity data to a refined molecular model and to facilitate structure solution for both the novice and expert crystallographer.


Acta Crystallographica Section D-biological Crystallography | 2005

Likelihood-enhanced fast translation functions

Airlie J. McCoy; Ralf W. Grosse-Kunstleve; Laurent C. Storoni; Randy J. Read

This paper is a companion to a recent paper on fast rotation functions [Storoni et al. (2004), Acta Cryst. D60, 432-438], which showed how a Taylor-series expansion of the maximum-likelihood rotation function leads to improved likelihood-enhanced fast rotation functions. In a similar manner, it is shown here how linear and quadratic Taylor-series expansions and least-squares approximations of the maximum-likelihood translation function lead to likelihood-enhanced translation functions, which can be calculated by FFT and which are more sensitive to the correct translation than the traditional correlation-coefficient fast translation function. These likelihood-enhanced translation targets for molecular-replacement searches have been implemented in the program Phaser using the Computational Crystallography Toolbox (cctbx).


Acta Crystallographica Section D-biological Crystallography | 2004

Likelihood-enhanced fast rotation functions

Laurent C. Storoni; Airlie J. McCoy; Randy J. Read

Experiences with the molecular-replacement program Beast have shown that maximum-likelihood rotation targets are more sensitive to the correct orientation than traditional targets. However, this comes at a high computational cost: brute-force rotation searches can take hours or even days of computation time on current desktop computers. Series approximations to the full likelihood target have been developed that can be computed by fast Fourier transforms in minutes. These likelihood-enhanced targets are more sensitive to the correct orientation than the Crowther fast rotation function and they take advantage of information from partial solutions. The likelihood-enhanced rotation targets have been implemented in the program Phaser.


Acta Crystallographica Section D-biological Crystallography | 2007

Solving structures of protein complexes by molecular replacement with Phaser

Airlie J. McCoy

Four case studies in using maximum-likelihood molecular replacement, as implemented in the program Phaser, to solve structures of protein complexes are described.


Acta Crystallographica Section D-biological Crystallography | 2009

Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard

Thomas C. Terwilliger; Paul D. Adams; Randy J. Read; Airlie J. McCoy; Nigel W. Moriarty; Ralf W. Grosse-Kunstleve; Pavel V. Afonine; Peter H. Zwart; Li-Wei Hung

Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution.


Methods | 2011

The Phenix software for automated determination of macromolecular structures.

Paul D. Adams; Pavel V. Afonine; Gábor Bunkóczi; Vincent B. Chen; Nathaniel Echols; Jeffrey J. Headd; Li-Wei Hung; Swati Jain; Gary J. Kapral; Ralf W. Grosse Kunstleve; Airlie J. McCoy; Nigel W. Moriarty; Robert D. Oeffner; Randy J. Read; David C. Richardson; Jane S. Richardson; Thomas C. Terwilliger; Peter H. Zwart

X-ray crystallography is a critical tool in the study of biological systems. It is able to provide information that has been a prerequisite to understanding the fundamentals of life. It is also a method that is central to the development of new therapeutics for human disease. Significant time and effort are required to determine and optimize many macromolecular structures because of the need for manual interpretation of complex numerical data, often using many different software packages, and the repeated use of interactive three-dimensional graphics. The Phenix software package has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on automation. This has required the development of new algorithms that minimize or eliminate subjective input in favor of built-in expert-systems knowledge, the automation of procedures that are traditionally performed by hand, and the development of a computational framework that allows a tight integration between the algorithms. The application of automated methods is particularly appropriate in the field of structural proteomics, where high throughput is desired. Features in Phenix for the automation of experimental phasing with subsequent model building, molecular replacement, structure refinement and validation are described and examples given of running Phenix from both the command line and graphical user interface.


Methods of Molecular Biology | 2008

Automated Structure Solution with the PHENIX Suite

Peter H. Zwart; Pavel V. Afonine; Ralf W. Grosse-Kunstleve; Li-Wei Hung; Thomas R. Ioerger; Airlie J. McCoy; Erik McKee; Nigel W. Moriarty; Randy J. Read; James C. Sacchettini; Nicholas K. Sauter; Laurent C. Storoni; Thomas C. Terwilliger; Paul D. Adams

Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution, and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution, and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template- and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix. refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

Collaboration


Dive into the Airlie J. McCoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Adams

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Terwilliger

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel V. Afonine

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ralf W. Grosse-Kunstleve

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nigel W. Moriarty

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Wei Hung

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge