Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aivar Liiv is active.

Publication


Featured researches published by Aivar Liiv.


RNA | 2008

Identification of pseudouridine methyltransferase in Escherichia coli

Rya Ero; Lauri Peil; Aivar Liiv; Jaanus Remme

In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem-loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m(3)Psi) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Psi1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m(3)Psi1915 is the only methylated pseudouridine in bacteria described to date.


EMBO Reports | 2011

Ribosome degradation in growing bacteria

Kerli Piir; Anton Paier; Aivar Liiv; Tanel Tenson; Ülo Maiväli

Ribosomes are large ribozymes that synthesize all cellular proteins. As protein synthesis is rate‐limiting for bacterial growth and ribosomes can comprise a large portion of the cellular mass, elucidation of ribosomal turnover is important to the understanding of cellular physiology. Although ribosomes are widely believed to be stable in growing cells, this has never been rigorously tested, owing to the lack of a suitable experimental system in commonly used bacterial model organisms. Here, we develop an experimental system to directly measure ribosomal stability in Escherichia coli. We show that (i) ribosomes are stable when cells are grown at a constant rate in the exponential phase; (ii) more than half of the ribosomes made during exponential growth are degraded during slowing of culture growth preceding the entry into stationary phase; and (iii) ribosomes are stable for many hours in the stationary phase. Ribosome degradation occurs in growing cultures that contain almost no dead cells and coincides with a reduction of comparable magnitude in the cellular RNA concentration.


Journal of Molecular Biology | 2009

Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.

Kalle Kipper; Csaba Hetényi; Sulev Sild; Jaanus Remme; Aivar Liiv

Intersubunit bridges are important for holding together subunits in the 70S ribosome. Moreover, a number of intersubunit bridges have a role in modulating the activity of the ribosome during translation. Ribosomal intersubunit bridge B2a is formed by the interaction between the conserved 23S rRNA helix-loop 69 (H69) and the top of the 16S rRNA helix 44. Within the 70S ribosome, bridge B2a contacts translation factors and the A-site tRNA. In addition to bridging the subunits, bridge B2a has been invoked in a number of other ribosomal functions from initiation to termination. In the present work, single-nucleotide substitutions were inserted at positions 1912 and 1919 of Escherichia coli 23S rRNA (helix 69), which are involved in important intrahelical and intersubunit tertiary interactions in bridge B2a. The resulting ribosomes had a severely reduced activity in a cell-free translation elongation assay, but displayed a nearly wild-type-level peptidyl transferase activity. In vitro reassociation efficiency decreased with all of the H69 variant 50S subunits, but was severest with the A1919C and DeltaH69 variants. The mutations strongly affected initiation-factor-dependent 70S initiation complex formation, but exhibited a minor effect on the nonenzymatic initiation process. The mutations decreased ribosomal processivity in vitro and caused a progressive depletion of 50S subunits in polysomal fractions in vivo. Mutations at position 1919 decreased the stability of a dipeptidyl-tRNA in the A-site, whereas the binding of the dipeptidyl-tRNA was rendered more stable with 1912 and DeltaH69 mutations. Our results suggest that the H69 of 23S rRNA functions as a control element during enzymatic steps of translation.


Molecular Microbiology | 2010

Ribosome reactivation by replacement of damaged proteins

Arto Pulk; Aivar Liiv; Lauri Peil; Ülo Maiväli; Knud H. Nierhaus; Jaanus Remme

Ribosomal functions are vital for all organisms. Bacterial ribosomes are stable 2.4 MDa particles composed of three RNAs and over 50 different proteins. Accumulating damage to ribosomal RNA or proteins can disturb ribosome functioning. Organisms could benefit from degrading or possibly repairing inactive or partially active ribosomes. Reactivation of chemically damaged ribosomes by a process of protein replacement was studied in vitro. Ribosomes were inactivated by chemical modification of Cys residues. Incubation of modified ribosomes with total ribosomal proteins led to reactivation of translational activity. Intriguingly, ribosomal proteins extracted by LiCl are equally active in the restoration of ribosome function. Incubation of 70S ribosomes with isotopically labelled r‐proteins followed by separation of ribosomes was used to identify exchangeable proteins. A similar set of proteins was found to be exchanged in vivo under stress conditions in the stationary phase. We propose that repair of damaged ribosomes might be an important mechanism for maintaining protein synthesis activity following chemical damage.


FEBS Journal | 2007

Substrate specificity of the pseudouridine synthase RluD in Escherichia coli

Margus Leppik; Lauri Peil; Kalle Kipper; Aivar Liiv; Jaanus Remme

Pseudouridine synthase RluD converts uridines at positions 1911, 1915, and 1917 of 23S rRNA to pseudouridines. These nucleotides are located in the functionally important helix‐loop 69 of 23S rRNA. RluD is the only pseudouridine synthase that is required for normal growth in Escherichia coli. We have analyzed substrate specificity of RluD in vivo. Mutational analyses have revealed: (a) RluD isomerizes uridine in vivo only at positions 1911, 1915, and 1917, regardless of the presence of uridine at other positions in the loop of helix 69 of 23S rRNA variants; (b) substitution of one U by C has no effect on the conversion of others (i.e. formation of pseudouridines at positions 1911, 1915, and 1917 are independent of each other); (c) A1916 is the only position in the loop of helix 69, where mutations affect the RluD specific pseudouridine formation. Pseudouridines were determined in the ribosomal particles from a ribosomal large subunit defective strain (RNA helicase DeaD–). An absence of pseudouridines in the assembly precursor particles suggests that RluD directed isomerization of uridines occurs as a late step during the assembly of the large ribosomal subunit.


RNA | 2010

Specificity and kinetics of 23S rRNA modification enzymes RlmH and RluD

Rya Ero; Margus Leppik; Aivar Liiv; Jaanus Remme

Along the ribosome assembly pathway, various ribosomal RNA processing and modification reactions take place. Stem-loop 69 in the large subunit of Escherichia coli ribosomes plays a substantial role in ribosome functioning. It contains three highly conserved pseudouridines synthesized by pseudouridine synthase RluD. One of the pseudouridines is further methylated by RlmH. In this paper we show that RlmH has unique substrate specificity among rRNA modification enzymes. It preferentially methylates pseudouridine and less efficiently uridine. Furthermore, RlmH is the only known modification enzyme that is specific to 70S ribosomes. Kinetic parameters determined for RlmH are the following: The apparent K(M) for substrate 70S ribosomes is 0.51 ± 0.06 μM, and for cofactor S-adenosyl-L-methionine 27 ± 3 μM; the k(cat) values are 4.95 ± 1.10 min⁻¹ and 6.4 ± 1.3 min⁻¹, respectively. Knowledge of the substrate specificity and the kinetic parameters of RlmH made it possible to determine the kinetic parameters for RluD as well. The K(M) value for substrate 50S subunits is 0.98 ± 0.18 μM and the k(cat) value is 1.97 ± 0.46 min⁻¹. RluD is the first rRNA pseudouridine synthase to be kinetically characterized. The determined rates of RluD- and RlmH-directed modifications of 23S rRNA are compatible with the rate of 50S assembly in vivo. The fact that RlmH requires 30S subunits demonstrates the dependence of 50S subunit maturation on the simultaneous presence of 30S subunits.


Biochimie | 2011

Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1.

Kalle Kipper; Sulev Sild; Csaba Hetényi; Jaanus Remme; Aivar Liiv

Pseudouridine [Ψ] is a frequent base modification in the ribosomal RNA [rRNA] and may be involved in the modulation of the conformational flexibility of rRNA helix-loop structures during protein synthesis. Helix 69 of 23S rRNA contains pseudouridines at the positions 1911, 1915 and 1917 which are formed by the helix 69-specific synthase RluD. The growth defect caused by the lack of RluD can be rescued by mutations in class I release factor RF2, indicating a role for helix 69 pseudouridines in translation termination. We investigated the role of helix 69 pseudouridines in peptide release by release factors RF1 and RF2 in an in vitro system consisting of purified components of the Escherichia coli translation apparatus. Lack of all three pseudouridines in helix 69 compromised the activity of RF2 about 3-fold but did not significantly affect the activity of RF1. Reintroduction of pseudouridines into helix 69 by RluD-treatment restored the activity of RF2 in peptide release. A Ψ-to-C substitution at the 1917 position caused an increase in the dissociation rate of RF1 and RF2 from the postrelease ribosome. Our results indicate that the presence of all three pseudouridines in helix 69 stimulates peptide release by RF2 but has little effect on the activity of RF1. The interactions around the pseudouridine at the 1917 position appear to be most critical for a proper interaction of helix 69 with release factors.


RNA Biology | 2017

Toxins MazF and MqsR cleave Escherichia coli rRNA precursors at multiple sites

Toomas Mets; Markus Lippus; David Schryer; Aivar Liiv; Villu Kasari; Anton Paier; Ülo Maiväli; Jaanus Remme; Tanel Tenson; Niilo Kaldalu

ABSTRACT The endoribonuclease toxins of the E. coli toxin-antitoxin systems arrest bacterial growth and protein synthesis by targeting cellular mRNAs. As an exception, E. coli MazF was reported to cleave also 16S rRNA at a single site and separate an anti-Shine-Dalgarno sequence-containing RNA fragment from the ribosome. We noticed extensive rRNA fragmentation in response to induction of the toxins MazF and MqsR, which suggested that these toxins can cleave rRNA at multiple sites. We adapted differential RNA-sequencing to map the toxin-cleaved 5′- and 3′-ends. Our results show that the MazF and MqsR cleavage sites are located within structured rRNA regions and, therefore, are not accessible in assembled ribosomes. Most of the rRNA fragments are located in the aberrant ribosomal subunits that accumulate in response to toxin induction and contain unprocessed rRNA precursors. We did not detect MazF- or MqsR-cleaved rRNA in stationary phase bacteria and in assembled ribosomes. Thus, we conclude that MazF and MqsR cleave rRNA precursors before the ribosomes are assembled and potentially facilitate the decay of surplus rRNA transcripts during stress.


Journal of Molecular Biology | 2017

The Intersubunit Bridge B1b of the Bacterial Ribosome Facilitates Initiation of Protein Synthesis and Maintenance of Translational Fidelity

Silva Lilleorg; Kaspar Reier; Jaanus Remme; Aivar Liiv

In bacteria, ribosomal subunits are connected via 12 intersubunit bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The only protein-protein bridge in the ribosome is ribosomal intersubunit bridge 1b (B1b), which is mainly formed by the bacterial protein L31 (bL31) and connects the head domain of 30S subunit and the central protuberance of the 50S subunit. It is known to be the most dynamic intersubunit bridge. Here, we have evaluated the role of bL31 and thereby the bridge B1b in the working cycle of the ribosome. First, bL31-deficient ribosomes are severely compromised in their ability to ensure translational fidelity particularly in reading frame maintenance in vivo. Second, in the absence of bL31, the rate of initiation is significantly reduced both in vivo and in vitro. Third, polysome profile and subunit reassociation assays demonstrate that bL31 is important for stabilizing subunit joining in vivo and in vitro. Together, our results demonstrate that bL31 is important for determining translational fidelity and stabilizing subunit association. We conclude that the only protein-protein intersubunit bridge of the bacterial ribosome facilitates translation initiation and is essential for maintaining the reading frame of mRNA translation.


Nucleic Acids Research | 2017

Random pseuoduridylation in vivo reveals critical region of Escherichia coli 23S rRNA for ribosome assembly

Margus Leppik; Aivar Liiv; Jaanus Remme

Abstract Pseudouridine is the most common modified nucleoside in RNA, which is found in stable RNA species and in eukaryotic mRNAs. Functional analysis of pseudouridine is complicated by marginal effect of its absence. We demonstrate that excessive pseudouridines in rRNA inhibit ribosome assembly. Ten-fold increase of pseudouridines in the 16S and 23S rRNA made by a chimeric pseudouridine synthase leads to accumulation of the incompletely assembled large ribosome subunits. Hyper modified 23S rRNA is found in the r-protein assembly defective particles and are selected against in the 70S and polysome fractions showing modification interference. Eighteen positions of 23S rRNA were identified where isomerization of uridines interferes with ribosome assembly. Most of the interference sites are located in the conserved core of the large subunit, in the domain 0 of 23S rRNA, around the peptide exit tunnel. A plausible reason for pseudouridine-dependent inhibition of ribosome assembly is stabilization of rRNA structure, which leads to the folding traps of rRNA and to the retardation of the ribosome assembly.

Collaboration


Dive into the Aivar Liiv's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge