Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajantha Solomon is active.

Publication


Featured researches published by Ajantha Solomon.


Science | 1995

Genomic Structure of an Attenuated Quasi Species of HIV-1 from a Blood Transfusion Donor and Recipients

Nicholas J. Deacon; A. Tsykin; Ajantha Solomon; K. Smith; M. Ludford-Menting; David J. Hooker; Dale A. McPhee; Alison L. Greenway; Anne Ellett; Catherine Chatfield; Victoria A. Lawson; Suzanne M. Crowe; Anne L. Maerz; Secondo Sonza; Jenny Learmont; John S. Sullivan; Anthony L. Cunningham; Dominic E. Dwyer; D. Dowton; John Mills

A blood donor infected with human immunodeficiency virus-type 1 (HIV-1) and a cohort of six blood or blood product recipients infected from this donor remain free of HIV-1-related disease with stable and normal CD4 lymphocyte counts 10 to 14 years after infection. HIV-1 sequences from either virus isolates or patient peripheral blood mononuclear cells had similar deletions in the nef gene and in the region of overlap of nef and the U3 region of the long terminal repeat (LTR). Full-length sequencing of one isolate genome and amplification of selected HIV-1 genome regions from other cohort members revealed no other abnormalities of obvious functional significance. These data show that survival after HIV infection can be determined by the HIV genome and support the importance of nef or the U3 region of the LTR in determining the pathogenicity of HIV-1.


Journal of Immunology | 2007

The CD16+ Monocyte Subset Is More Permissive to Infection and Preferentially Harbors HIV-1 In Vivo

Philip Ellery; Emma Tippett; Ya-Lin Chiu; Geza Paukovics; Paul U. Cameron; Ajantha Solomon; Sharon R. Lewin; Paul R. Gorry; Anthony Jaworowski; Warner C. Greene; Secondo Sonza; Suzanne M. Crowe

HIV-1 persists in peripheral blood monocytes in individuals receiving highly active antiretroviral therapy (HAART) with viral suppression, despite these cells being poorly susceptible to infection in vitro. Because very few monocytes harbor HIV-1 in vivo, we considered whether a subset of monocytes might be more permissive to infection. We show that a minor CD16+ monocyte subset preferentially harbors HIV-1 in infected individuals on HAART when compared with the majority of monocytes (CD14highCD16−). We confirmed this by in vitro experiments showing that CD16+ monocytes were more susceptible to CCR5-using strains of HIV-1, a finding that is associated with higher CCR5 expression on these cells. CD16+ monocytes were also more permissive to infection with a vesicular stomatitis virus G protein-pseudotyped reporter strain of HIV-1 than the majority of monocytes, suggesting that they are better able to support HIV-1 replication after entry. Consistent with this observation, high molecular mass complexes of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) were observed in CD16+ monocytes that were similar to those observed in highly permissive T cells. In contrast, CD14highCD16− monocytes contained low molecular mass active APOBEC3G, suggesting this is a mechanism of resistance to HIV-1 infection in these cells. Collectively, these data show that CD16+ monocytes are preferentially susceptible to HIV-1 entry, more permissive for replication, and constitute a continuing source of viral persistence during HAART.


The Lancet HIV | 2014

Panobinostat, a histone deacetylase inhibitor, for latent- virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial

Thomas A. Rasmussen; Martin Tolstrup; Christel R. Brinkmann; Christian Erikstrup; Ajantha Solomon; Anni Winckelmann; Sarah Palmer; Charles A. Dinarello; Maria J. Buzon; Mathias Lichterfeld; Sharon R. Lewin; Lars Østergaard; Ole S. Søgaard

BACKGROUND Activating the expression of latent virus is an approach that might form part of an HIV cure. We assessed the ability of the histone deacetylase inhibitor panobinostat to disrupt HIV-1 latency and the safety of this strategy. METHODS In this phase 1/2 clinical trial, we included aviraemic adults with HIV treated at Aarhus University Hospital, Denmark. Participants received oral panobinostat (20 mg) three times per week every other week for 8 weeks while maintaining combination antiretroviral therapy. The primary outcome was change from baseline of cell-associated unspliced HIV RNA. Secondary endpoints were safety, plasma HIV RNA, total and integrated HIV DNA, infectious units per million CD4 T cells, and time to viral rebound during an optional analytical treatment interruption of antiretroviral therapy. This trial is registered with ClinicalTrial.gov, number NCT01680094. FINDINGS We enrolled 15 patients. The level of cell-associated unspliced HIV RNA increased significantly at all timepoints when patients were taking panobinostat (p < 0·0001). The median maximum increase in cell-associated unspliced HIV RNA during panobinostat treatment was 3·5-fold (range 2·1-14·4). Panobinostat induced plasma viraemia with an odds ratio of 10·5 (95% CI 2·2-50·3; p = 0·0002) compared with baseline. We recorded a transient decrease in total HIV DNA, but no cohort-wide reduction in total HIV DNA, integrated HIV DNA, or infectious units per million. Nine patients participated in the analytical treatment interruption, median time to viral rebound was 17 days (range 14-56). Panobinostat was well tolerated. 45 adverse events were reported, but only 16 (all grade 1) were presumed related to panobinostat. INTERPRETATION Panobinostat effectively disrupts HIV latency in vivo and is a promising candidate for future combination clinical trials aimed at HIV eradication. However, panobinostat did not reduce the number of latently infected cells and this approach may need to be combined with others to significantly affect the latent HIV reservoir. FUNDING The Danish Council for Strategic Research and Aarhus University.


PLOS Pathogens | 2014

Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy

Julian Elliott; Fiona Wightman; Ajantha Solomon; Khader Ghneim; Jeffrey D. Ahlers; Mark J. Cameron; Miranda Z. Smith; Tim Spelman; James H. McMahon; Pushparaj Velayudham; Gregor J. Brown; Janine Roney; Jo Watson; Miles Prince; Jennifer Hoy; Nicolas Chomont; Rémi Fromentin; Francesco A. Procopio; Joumana Zeidan; Sarah Palmer; Lina Odevall; Ricky W. Johnstone; Ben P. Martin; Elizabeth Sinclair; Steven G. Deeks; Daria J. Hazuda; Paul U. Cameron; Rafick-Pierre Sekaly; Sharon R. Lewin

Human immunodeficiency virus (HIV) persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs) are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi) may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART). The primary endpoint was change in cell associated unspliced (CA-US) HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065). Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90%) with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1). CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells. Trial Registration ClinicalTrials.gov NCT01365065


Proceedings of the National Academy of Sciences of the United States of America | 2010

Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton

Paul U. Cameron; Suha Saleh; Georgina Sallmann; Ajantha Solomon; Fiona Wightman; Vanessa A. Evans; Geneviève Boucher; Elias K. Haddad; Rafick-Pierre Sekaly; Andrew N. Harman; Jenny L. Anderson; Kate L. Jones; Johnson Mak; Anthony L. Cunningham; Anthony Jaworowski; Sharon R. Lewin

Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4+ T cells. We now show that HIV-1 latency can be established in resting CD4+ T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4+ T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4+ T cells during normal chemokine-directed recirculation of CD4+ T cells between blood and tissue.


Journal of Virology | 2000

Characterization of Three nef-Defective Human Immunodeficiency Virus Type 1 Strains Associated with Long-Term Nonprogression

David I. Rhodes; Lesley J. Ashton; Ajantha Solomon; Andrew Carr; David A. Cooper; John M. Kaldor; Nicholas J. Deacon

ABSTRACT Long-term survivors (LTS) of human immunodeficiency virus type 1 (HIV-1) infection provide an opportunity to investigate both viral and host factors that influence the rate of disease progression. We have identified three HIV-1-infected individuals in Australia who have been infected for over 11 years with viruses that contain deletions in the nef and nef-long terminal repeat (nef/LTR) overlap regions. These viruses differ from each other and from other nef-defective strains of HIV-1 previously identified in Australia. One individual, LTS 3, is infected with a virus containing a nef gene with a deletion of 29 bp from the nef/LTR overlap region, resulting in a truncated Nef open reading frame. In addition to the Nef defect, only viruses containing truncated Vif open reading frames of 37 or 69 amino acids could be detected in peripheral blood mononuclear cells isolated from this patient. LTS 3 had a viral load of less than 20 copies of RNA/ml of plasma. The other two long-term survivors, LTS 9 and LTS 11, had loads of less than 200 copies of RNA/ml of plasma and are infected with viruses with larger deletions in both thenef alone and nef/LTR overlap regions. These viruses contain wild-type vif, vpu, andvpr accessory genes. All three strains of virus had envelope sequences characteristic of macrophagetropic viruses. These findings further indicate the reduced pathogenic potential ofnef-defective viruses.


The Journal of Infectious Diseases | 2010

Biological determinants of immune reconstitution in HIV-infected patients receiving antiretroviral therapy: the role of interleukin 7 and interleukin 7 receptor α and microbial translocation.

Reena Rajasuriar; David R. Booth; Ajantha Solomon; Kyra Chua; Tim Spelman; Maelenn Gouillou; Timothy E. Schlub; Miles P. Davenport; Suzanne M. Crowe; Julian Elliott; Jennifer Hoy; Christopher K. Fairley; Graeme J. Stewart; Paul U. Cameron; Sharon R. Lewin

BACKGROUND Multiple host factors may influence CD4(+) T cell reconstitution in human immunodeficiency virus (HIV)-infected patients after suppressive antiretroviral therapy (ART). We hypothesized that residual immune activation and polymorphisms in the interleukin 7 (IL-7) receptor α (IL-7Rα) gene were important for immune recovery. METHODS We examined HIV-infected patients receiving suppressive ART (n = 96) for their IL-7Rα haplotypes and measured levels of lipopolysaccharide (LPS), soluble CD14, and IL-7 in plasma samples collected before and after ART initiation. Levels of soluble IL-7Rα were measured in HIV-infected patients with IL-7Rα haplotype 2 (n = 11) and those without IL-7Rα haplotype 2 (n = 22). Multivariate analysis was used to identify variables associated with faster recovery to CD4(+) T cell counts of >500 and >200 cells/μL. RESULTS Both LPS and soluble CD14 levels were significantly decreased with ART (P < .001, respectively) but remained elevated compared with uninfected controls. In a multivariate analysis, faster recovery to a CD4(+) T cell count of >500 cells/μL was significantly associated with higher baseline CD4(+) T cell count, younger age, lower pre-ART LPS level, higher pre-ART soluble CD14 level, lower pre-ART IL-7 level, and IL-7Rα haplotype 2 (hazard ratio, 1.50; 95% confidence interval, 1.03-2.19; P = .034). HIV-infected patients with haplotype 2 had significantly lower soluble IL-7Rα levels compared with those of patients without haplotype 2 (P < .001). CONCLUSION Both the extent of immune depletion prior to ART and IL-7Rα haplotype 2 are important determinants of time to CD4(+) T cell recovery to counts of >500 cells/μL.


The Journal of Infectious Diseases | 2010

Both CD31+ and CD31- Naive CD4+ T Cells Are Persistent HIV Type 1-Infected Reservoirs in Individuals Receiving Antiretroviral Therapy

Fiona Wightman; Ajantha Solomon; Gabriela Khoury; Justin A. Green; Lachlan Robert Gray; Paul R. Gorry; Yung Shwen Ho; Nitin K. Saksena; Jennifer Hoy; Suzanne M. Crowe; Paul U. Cameron; Sharon R. Lewin

BACKGROUND Naive T cell recovery is critical for successful immune reconstitution after antiretroviral therapy (ART), but the relative contribution of CD31(+) and CD31⁻ naive T cells to immune reconstitution and viral persistence is unknown. METHODS In a cross-sectional (n = 94) and longitudinal (n = 10) study of human immunodeficiency virus (HIV)-infected patients before and after ART, we examined the ratio of CD31(+) to CD31⁻ naive CD4(+) T cells. In the longitudinal cohort we then quantified the concentration of HIV-1 DNA in each cell subset and performed single-genome amplification of virus from memory and naive T cells. RESULTS Patients receiving ART had a higher proportion of CD31(+) CD4(+) T cells than HIV-1-infected individuals naive to ART and uninfected control subjects (P < .001 and .007, respectively). After 24 months of ART, the proportion of CD31(+) naive CD4(+) T cells did not change, the concentration of HIV-1 DNA in memory CD4(+) T cells significantly decreased over time (P < .001), and there was no change in the concentration of HIV-1 DNA in CD31(+) or CD31⁻ naive CD4(+) T cells (P = .751 and .251, respectively). Single-genome amplification showed no evidence of virus compartmentalization in memory and naive T cell subsets before or after ART. CONCLUSIONS After ART, both CD31(+) and CD31⁻ naive CD4(+) T cells expand, and both subsets represent a stable, persistent reservoir of HIV-1.


The Lancet HIV | 2015

Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study

Julian Elliott; James H. McMahon; Christina C. Chang; Sulggi A. Lee; Wendy Hartogensis; Namandjé N. Bumpus; Rada Savic; Janine Roney; Ajantha Solomon; Michael Piatak; Robert J. Gorelick; Jeff Lifson; Peter Bacchetti; Steven G. Deeks; Sharon R. Lewin

BACKGROUND In vitro, disulfiram activated HIV transcription in a primary T-cell model of HIV latency and in a pilot clinical study increased plasma HIV RNA in individuals with adequate drug exposure. We assessed the effect of disulfiram on HIV transcription in a dose-escalation study. METHODS In this prospective dose-escalation study, to optimise disulfiram exposure we included adults with HIV on suppressive antiretroviral therapy, with plasma HIV RNA of less than 50 copies per mL and a CD4 cell count greater than 350 cells per μL. Participants were allocated sequentially to one of three dosing groups (500 mg, 1000 mg, and 2000 mg) and received disulfiram daily for 3 days. Only the staff who did laboratory assays were masked to group assignment. The primary endpoint was change in cell-associated unspliced HIV RNA in CD4 cells. The primary analysis method was a negative binomial regression, with the number of copies as the outcome variable and the input total RNA or plasma volume as an exposure variable, which is equivalent to modelling copies or input. We used these models to estimate changes from before disulfiram to timepoints during and after disulfiram administration. This study is registered with ClinicalTrials.gov, number NCT01944371. FINDINGS Of 34 participants screened for eligibility at The Alfred Hospital (Melbourne, VIC, Australia), and San Francisco General Hospital (San Francisco, CA, USA), 30 people were enrolled between Sept 24, 2013, and March 31, 2014. The estimated fold increases in cell-associated unspliced HIV RNA from baseline were 1·7 (95% CI 1·3-2·2; p<0·0001) to the timepoint during disulfiram treatment and 2·1 (1·5-2·9; p<0·0001) to the timepoint after disulfiram in the 500 mg group; 1·9 (1·6-2·4; p<0·0001) and 2·5 (1·9-3·3; p<0·0001) in the 1000 mg group; and 1·6 (1·2-2·1; p=0·0026) and 2·1 (1·5-3·1; p=0·0001) in the 2000 mg group. No deaths occurred, and no serious adverse events were noted. Disulfiram was well tolerated at all doses. INTERPRETATION Short-term administration of disulfiram resulted in increases in cell-associated unspliced HIV RNA at all doses, consistent with activating HIV latency. Disulfiram may be suited for future studies of combination and prolonged therapy to activate latent HIV. FUNDING The Foundation for AIDS Research (amfAR); National Institute of Allergy and Infectious Diseases, National Institutes of Health; Australian National Health and Medical Research Council.


The Journal of Infectious Diseases | 2013

Inhibition of Telomerase Activity by Human Immunodeficiency Virus (HIV) Nucleos(t)ide Reverse Transcriptase Inhibitors: A Potential Factor Contributing to HIV-Associated Accelerated Aging

Edwin Leeansyah; Paul U. Cameron; Ajantha Solomon; Surekha Tennakoon; Pushparaj Velayudham; Maelenn Gouillou; Tim Spelman; Anna C. Hearps; Christopher K. Fairley; De Villiers Smit; Anna B. Pierce; Jude Armishaw; Suzanne M. Crowe; David A. Cooper; Kersten K. Koelsch; Jun-Ping Liu; John Chuah; Sharon R. Lewin

BACKGROUND Human immunodeficiency virus (HIV)-infected patients on combination active antiretroviral therapy (cART) are at increased risk of age-related complications. We hypothesized that nucleos(t)ide reverse transcriptase inhibitors (NRTI) may contribute to accelerated aging in HIV-infected individuals on cART via inhibition of telomerase activity. METHODS Telomerase activity and telomere length (TL) were measured by quantitative polymerase chain reaction in vitro in activated peripheral blood mononuclear cells (PBMCs) cultured with NRTI and ex vivo in PBMCs from uninfected patients exposed to NRTI and from HIV-infected patients on NRTI-containing cART. RESULTS Lamivudine, abacavir, zidovudine, emtricitabine, and tenofovir significantly inhibited telomerase activity in activated PBMCs in vitro. Tenofovir was the most potent inhibitor of telomerase activity and caused greatest shortening of TL in vitro at the therapeutic concentration of 0.3 μM. PBMCs from HIV-infected patients receiving NRTI-containing cART (n = 39) had significantly lower telomerase activity than HIV-uninfected patients (n = 47; P = .011) and HIV-infected patients receiving non-NRTI-containing cART (n = 11; P < .001). TL was significantly inversely associated with age (P = .009) and the total duration on any NRTI (P = .01). CONCLUSIONS NRTIs and, specifically tenofovir at therapeutic concentrations, inhibit telomerase activity leading to accelerated shortening of TL in activated PBMCs. The relationship between NRTI, reduced telomerase activity, and accelerated aging requires further investigation in HIV-infected individuals on cART.

Collaboration


Dive into the Ajantha Solomon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Spelman

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge