Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajay D. Pillai is active.

Publication


Featured researches published by Ajay D. Pillai.


Cell | 2011

Malaria Parasite clag3 Genes Determine Channel-Mediated Nutrient Uptake by Infected Red Blood Cells

Wang Nguitragool; Abdullah A. B. Bokhari; Ajay D. Pillai; Kempaiah Rayavara; Paresh Sharma; Brad Turpin; L. Aravind; Sanjay A. Desai

Development of malaria parasites within vertebrate erythrocytes requires nutrient uptake at the host cell membrane. The plasmodial surface anion channel (PSAC) mediates this transport and is an antimalarial target, but its molecular basis is unknown. We report a parasite gene family responsible for PSAC activity. We used high-throughput screening for nutrient uptake inhibitors to identify a compound highly specific for channels from the Dd2 line of the human pathogen P. falciparum. Inheritance of this compounds affinity in a Dd2 × HB3 genetic cross maps to a single parasite locus on chromosome 3. DNA transfection and in vitro selections indicate that PSAC-inhibitor interactions are encoded by two clag3 genes previously assumed to function in cytoadherence. These genes are conserved in plasmodia, exhibit expression switching, and encode an integral protein on the host membrane, as predicted by functional studies. This protein increases host cell permeability to diverse solutes.


Cell | 2015

Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes

Stuart L. Schreiber; Joanne Kotz; Min Li; Jeffrey Aubé; Christopher P. Austin; John C. Reed; Hugh Rosen; E. Lucile White; Larry A. Sklar; Craig W. Lindsley; Benjamin Alexander; Joshua Bittker; Paul A. Clemons; Andrea de Souza; Michael Foley; Michelle Palmer; Alykhan F. Shamji; Mathias J. Wawer; Owen B. McManus; Meng Wu; Beiyan Zou; Haibo Yu; Jennifer E. Golden; Frank J. Schoenen; Anton Simeonov; Ajit Jadhav; Michael R. Jackson; Anthony B. Pinkerton; Thomas Dy Chung; Patrick R. Griffin

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A blasticidin S-resistant Plasmodium falciparum mutant with a defective plasmodial surface anion channel

David A. Hill; Ajay D. Pillai; Fatima Nawaz; Karen Hayton; Lanxuan Doan; Godfrey Lisk; Sanjay A. Desai

Erythrocytes infected with malaria parasites exhibit marked increases in permeability to organic and inorganic solutes. The plasmodial surface anion channel (PSAC), an unusual voltage-dependent ion channel induced on the host membrane after infection, may play a central role in these permeability changes. Here, we identified a functional PSAC mutant through in vitro selection with blasticidin S. Resistance to blasticidin S was generated during culture and correlated with significant reductions in permeability to multiple solutes, consistent with uptake via a common pathway. Single channel recordings revealed marked changes in PSAC gating with the addition of a subconductance state not present in wild-type channels. The channels selectivity profile and pharmacology also were significantly altered. Eventual loss of the mutant phenotype upon removal of selective pressure and slower growth of mutant parasites suggest that PSAC serves an important role in intracellular parasite survival. These findings provide solid evidence for the uptake of diverse solutes via PSAC and implicate one or more parasite genes in expression of this channel.


Journal of Biomolecular Screening | 2014

Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High- Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS)

Uma D. Vempati; Caty Chung; Christopher Mader; Amar Koleti; Nakul Datar; Dušica Vidovic; David Wrobel; Sean D. Erickson; Jeremy L. Muhlich; Gabriel F. Berriz; Cyril H. Benes; Aravind Subramanian; Ajay D. Pillai; Caroline E. Shamu; Stephan C. Schürer

The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available.


Molecular Pharmacology | 2012

Solute Restriction Reveals an Essential Role for clag3-Associated Channels in Malaria Parasite Nutrient Acquisition

Ajay D. Pillai; Wang Nguitragool; Brian Lyko; Keithlee Dolinta; Michelle M. Butler; Son T. Nguyen; Norton P. Peet; Terry L. Bowlin; Sanjay A. Desai

The plasmodial surface anion channel (PSAC) increases erythrocyte permeability to many solutes in malaria but has uncertain physiological significance. We used a PSAC inhibitor with different efficacies against channels from two Plasmodium falciparum parasite lines and found concordant effects on transport and in vitro parasite growth when external nutrient concentrations were reduced. Linkage analysis using this growth inhibition phenotype in the Dd2 × HB3 genetic cross mapped the clag3 genomic locus, consistent with a role for two clag3 genes in PSAC-mediated transport. Altered inhibitor efficacy, achieved through allelic exchange or expression switching between the clag3 genes, indicated that the inhibitor kills parasites through direct action on PSAC. In a parasite unable to undergo expression switching, the inhibitor selected for ectopic homologous recombination between the clag3 genes to increase the diversity of available channel isoforms. Broad-spectrum inhibitors, which presumably interact with conserved sites on the channel, also exhibited improved efficacy with nutrient restriction. These findings indicate that PSAC functions in nutrient acquisition for intracellular parasites. Although key questions regarding the channel and its biological role remain, antimalarial drug development targeting PSAC should be pursued.


Molecular Pharmacology | 2010

A Cell-Based High-Throughput Screen Validates the Plasmodial Surface Anion Channel As an Antimalarial Target

Ajay D. Pillai; Margaret Pain; Tsione Solomon; Abdullah A. B. Bokhari; Sanjay A. Desai

The plasmodial surface anion channel (PSAC) is an unusual small-conductance ion channel induced on erythrocytes infected with plasmodia, including parasites responsible for human malaria. Although broadly available inhibitors produce microscopic clearance of parasite cultures at high concentrations and suggest that PSAC is an antimalarial target, they have low affinity for the channel and may interfere with other parasite activities. To address these concerns, we developed a miniaturized assay for PSAC activity and carried out a high-throughput inhibitor screen. Approximately 70,000 compounds from synthetic and natural product libraries were screened, revealing inhibitors from multiple structural classes including two novel and potent heterocyclic scaffolds. Single-channel patch-clamp studies indicated that these compounds act directly on PSAC, further implicating a proposed role in transport of diverse solutes. A statistically significant correlation between channel inhibition and in vitro parasite killing by a family of compounds provided chemical validation of PSAC as a drug target. These new inhibitors should be important research tools and may be starting points for much-needed antimalarial drugs.


Molecular Microbiology | 2013

Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodelling

Ajay D. Pillai; Rachel Addo; Paresh Sharma; Wang Nguitragool; Prakash Srinivasan; Sanjay A. Desai

Malaria parasites grow within erythrocytes, but are also free in host plasma between cycles of asexual replication. As a result, the parasite is exposed to fluctuating levels of Na+ and K+, ions assumed to serve important roles for the human pathogen, Plasmodium falciparum. We examined these assumptions and the parasites ionic requirements by establishing continuous culture in novel sucrose‐based media. With sucrose as the primary osmoticant and K+ and Cl− as the main extracellular ions, we obtained parasite growth and propagation at rates indistinguishable from those in physiological media. These conditions abolish long‐known increases in intracellular Na+ via parasite‐induced channels, excluding a requirement for erythrocyte cation remodelling. We also dissected Na+, K+ and Cl− requirements and found that unexpectedly low concentrations of each ion meet the parasites demands. Surprisingly, growth was not adversely affected by up to 148 mM K+, suggesting that low extracellular K+ is not an essential trigger for erythrocyte invasion. At the same time, merozoite egress and invasion required a threshold ionic strength, suggesting critical electrostatic interactions between macromolecules at these stages. These findings provide insights into transmembrane signalling in malaria and reveal fundamental differences between host and parasite ionic requirements.


Molecular Microbiology | 2009

Complex inheritance of the plasmodial surface anion channel in a Plasmodium falciparum genetic cross

Abdulnaser Alkhalil; Ajay D. Pillai; Abdullah A. B. Bokhari; Akhil B. Vaidya; Sanjay A. Desai

Human erythrocytes infected with the malaria parasite Plasmodium falciparum have increased permeabilities to many solutes. The plasmodial surface anion channel (PSAC) may mediate these changes. Despite good understanding of the biochemical and biophysical properties, the genetic basis of PSAC activity remains unknown. Functional polymorphisms in laboratory isolates and two mutants generated by in vitro selection implicate a parasite‐encoded channel, although parasite‐induced modifications of endogenous channels have not been formally excluded. Here, we identified stable differences in furosemide efficacy against PSAC activity induced by HB3 and 3D7A parasites. This difference was apparent in both single PSAC patch‐clamp recordings and in sorbitol‐mediated osmotic lysis measurements, confirming that Cl‐ and sorbitol are transported by a single‐channel type. Examination of 19 progeny from a genetic cross between HB3 and 3D7A revealed complex inheritance with some cloned progeny exhibiting furosemide affinities outside the range of parental values. Isolates generated by selfing of the 3D7A clone also exhibited altered furosemide affinities, implicating changes in one or more alleles during meiosis or passage through a primate host. PSAC may be encoded by multiple parasite genes (e.g. a multi‐gene family or multiple genes that encode distinct channel subunits) or a single polymorphic gene under strong selective pressure.


Nucleic Acids Research | 2018

Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: Integrated access to diverse large-scale cellular perturbation response data

Amar Koleti; Raymond Terryn; Vasileios Stathias; Caty Chung; Daniel J. Cooper; John Paul Turner; Dušica Vidovic; Michele Forlin; Tanya Tae Kelley; Alessandro D'Urso; Bryce K. Allen; Denis Torre; Kathleen M. Jagodnik; Lily Wang; Sherry L. Jenkins; Christopher Mader; Wen Niu; Mehdi Fazel; Naim Mahi; Marcin Pilarczyk; Nicholas Clark; Behrouz Shamsaei; Jarek Meller; Juozas Vasiliauskas; John F. Reichard; Mario Medvedovic; Avi Ma'ayan; Ajay D. Pillai; Stephan C. Schürer

Abstract The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging. The Big Data to Knowledge (BD2K) LINCS Data Coordination and Integration Center (DCIC) has developed data standards specifications, data processing pipelines, and a suite of end-user software tools to integrate and annotate LINCS-generated data, to make LINCS signatures searchable and usable for different types of users. Here, we describe the LINCS Data Portal (LDP) (http://lincsportal.ccs.miami.edu/), a unified web interface to access datasets generated by the LINCS DSGCs, and its underlying database, LINCS Data Registry (LDR). LINCS data served on the LDP contains extensive metadata and curated annotations. We highlight the features of the LDP user interface that is designed to enable search, browsing, exploration, download and analysis of LINCS data and related curated content.


Biochimica et Biophysica Acta | 2010

Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds.

Godfrey Lisk; Margaret Pain; Morgan Sellers; Philip A. Gurnev; Ajay D. Pillai; Sergey M. Bezrukov; Sanjay A. Desai

Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used to select mutant parasites with altered PSAC activities, suggesting acquired resistance via reduced channel-mediated toxin uptake. Surprisingly, although these toxins have similar structures and charge, we now show that reduced permeability of one does not protect the intracellular parasite from the other. Leupeptin accumulation in the blasticidin S-resistant mutant was relatively preserved, consistent with retained in vitro susceptibility to leupeptin. Subsequent in vitro selection with both toxins generated a double mutant parasite having additional changes in PSAC, implicating an antimalarial resistance mechanism for water-soluble drugs requiring channel-mediated uptake at the erythrocyte membrane. Characterization of these mutants revealed a single conserved channel on each mutant, albeit with distinct gating properties. These findings are consistent with a shared channel that mediates uptake of ions, nutrients and toxins. This channels gating and selectivity properties can be modified in response to in vitro selective pressure.

Collaboration


Dive into the Ajay D. Pillai's collaboration.

Top Co-Authors

Avatar

Sanjay A. Desai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Godfrey Lisk

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsione Solomon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avi Ma'ayan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen M. Jagodnik

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge