Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajay K. Yadav is active.

Publication


Featured researches published by Ajay K. Yadav.


The New England Journal of Medicine | 2011

NFKBIA Deletion in Glioblastomas

Markus Bredel; Denise M. Scholtens; Ajay K. Yadav; Angel A. Alvarez; Jaclyn J. Renfrow; James P. Chandler; Irene L.Y. Yu; Maria Stella Carro; Fangping Dai; Michael Tagge; Roberto Ferrarese; Claudia Bredel; Heidi S. Phillips; Paul J. Lukac; Pierre Robe; Astrid Weyerbrock; Hannes Vogel; Steven Dubner; Bret C. Mobley; Xiaolin He; Adrienne C. Scheck; Branimir I. Sikic; Kenneth D. Aldape; Arnab Chakravarti; Griffith R. Harsh

BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O(6)-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival.


Cancer Research | 2007

MEL-18 ACTS AS A TUMOR SUPPRESSOR BY REPRESSING BMI-1 EXPRESSION AND DOWN-REGULATING AKT ACTIVITY IN BREAST CANCER CELLS

Wei Jian Guo; Mu Sheng Zeng; Ajay K. Yadav; Li Bing Song; Bao Hong Guo; Vimla Band; Goberdhan P. Dimri

The Bmi-1 oncogene is overexpressed in a number of malignancies including breast cancer. In addition to Bmi-1, mammalian cells also express four other polycomb group (PcG) proteins that are closely related to Bmi-1. Virtually nothing is known about the role of these PcG proteins in oncogenesis. We have recently reported that Mel-18, a Bmi-1-related PcG protein, negatively regulates Bmi-1 expression, and that its expression negatively correlates with Bmi-1 in proliferating and senescing human fibroblasts. Here, we report that the expression of Bmi-1 and Mel-18 inversely correlates in a number of breast cancer cell lines and in a significant number of breast tumor samples. Overexpression of Mel-18 results in repression of Bmi-1 and reduction of the transformed phenotype in malignant breast cancer cells. Furthermore, the repression of Bmi-1 by Mel-18 is accompanied by the reduction of Akt/protein kinase B (PKB) activity in breast cancer cells. Similarly, Bmi-1 knockdown using RNA interference approach results in down-regulation of Akt/PKB activity and reduction in transformed phenotype of MCF7 cells. Importantly, we show that overexpression of constitutively active Akt overrides tumor-suppressive effect of Mel-18 overexpression and the knockdown of Bmi-1 expression. Thus, our studies suggest that Mel-18 and Bmi-1 may regulate the Akt pathway in breast cancer cells, and that Mel-18 functions as a tumor suppressor by repressing the expression of Bmi-1 and consequently down-regulating Akt activity.


JAMA | 2009

Monosomy of Chromosome 10 Associated With Dysregulation of Epidermal Growth Factor Signaling in Glioblastomas

Ajay K. Yadav; Jaclyn J. Renfrow; Denise M. Scholtens; Hehuang Xie; George E. Duran; Claudia Bredel; Hannes Vogel; James P. Chandler; Arnab Chakravarti; Pierre Robe; Sunit Das; Adrienne C. Scheck; John A. Kessler; Marcelo B. Soares; Branimir I. Sikic; Griffith R. Harsh; Markus Bredel

CONTEXT Glioblastomas--uniformly fatal brain tumors--often have both monosomy of chromosome 10 and gains of the epidermal growth factor receptor (EGFR) gene locus on chromosome 7, an association for which the mechanism is poorly understood. OBJECTIVES To assess whether coselection of EGFR gains on 7p12 and monosomy 10 in glioblastomas promotes tumorigenic epidermal growth factor (EGF) signaling through loss of the annexin A7 (ANXA7) gene on 10q21.1-q21.2 and whether ANXA7 acts as a tumor suppressor gene by regulating EGFR in glioblastomas. DESIGN, SETTING, AND PATIENTS Multidimensional analysis of gene, coding sequence, promoter methylation, messenger RNA (mRNA) transcript, protein data for ANXA7 (and EGFR), and clinical patient data profiles of 543 high-grade gliomas from US medical centers and The Cancer Genome Atlas pilot project (made public 2006-2008; and unpublished, tumors collected 2001-2008). Functional analyses using LN229 and U87 glioblastoma cells. MAIN OUTCOME MEASURES Associations among ANXA7 gene dosage, coding sequence, promoter methylation, mRNA transcript, and protein expression. Effect of ANXA7 haploinsufficiency on EGFR signaling and patient survival. Joint effects of loss of ANXA7 and gain of EGFR expression on tumorigenesis. RESULTS Heterozygous ANXA7 gene deletion is associated with significant loss of ANXA7 mRNA transcript expression (P = 1 x 10(-15); linear regression) and a reduction (mean [SEM]) of 91.5% (2.3%) of ANXA7 protein expression compared with ANXA7 wild-type glioblastomas (P = .004; unpaired t test). ANXA7 loss of function stabilizes the EGFR protein (72%-744% increase in EGFR protein abundance) and augments EGFR transforming signaling in glioblastoma cells. ANXA7 haploinsufficiency doubles tumorigenic potential of glioblastoma cells, and combined ANXA7 knockdown and EGFR overexpression promotes tumorigenicity synergistically. The heterozygous loss of ANXA7 in approximately 75% of glioblastomas in the The Cancer Genome Atlas plus infrequency of ANXA7 mutation (approximately 6% of tumors) indicates its role as a haploinsufficiency gene. ANXA7 mRNA transcript expression, dichotomized at the median, associates with patient survival in 191 glioblastomas (log-rank P = .008; hazard ratio [HR], 0.667; 95% confidence interval [CI], 0.493-0.902; 46.9 vs 74.8 deaths/100 person-years for high vs low ANXA7 mRNA expression) and with a separate group of 180 high-grade gliomas (log-rank P = .00003; HR, 0.476; 95% CI, 0.333-0.680; 21.8 vs 50.0 deaths/100 person-years for high vs low ANXA7 mRNA expression). Deletion of the ANXA7 gene associates with poor patient survival in 189 glioblastomas (log-rank P = .042; HR, 0.686; 95% CI, 0.476-0.989; 54.0 vs 80.1 deaths/100 person-years for wild-type ANXA7 vs ANXA7 deletion). CONCLUSION Haploinsufficiency of the tumor suppressor ANXA7 due to monosomy of chromosome 10 provides a clinically relevant mechanism to augment EGFR signaling in glioblastomas beyond that resulting from amplification of the EGFR gene.


Journal of Clinical Investigation | 2014

Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression

Roberto Ferrarese; Griffith R. Harsh; Ajay K. Yadav; Eva Bug; Daniel Maticzka; Wilfried Reichardt; Stephen M. Dombrowski; Tyler E. Miller; Anie P. Masilamani; Fangping Dai; Hyunsoo Kim; Michael Hadler; Denise M. Scholtens; Irene L.Y. Yu; Jürgen Beck; Vinodh Srinivasasainagendra; Fabrizio Costa; N. Baxan; Dietmar Pfeifer; Dominik von Elverfeldt; Rolf Backofen; Astrid Weyerbrock; Christine W. Duarte; Xiaolin He; Marco Prinz; James P. Chandler; Hannes Vogel; Arnab Chakravarti; Jeremy N. Rich; Maria Stella Carro

Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones.


Molecular Cancer | 2010

Deletion analysis of BMI1 oncoprotein identifies its negative regulatory domain

Ajay K. Yadav; Anagh A Sahasrabuddhe; Manjari Dimri; Prashant V Bommi; Rachana Sainger; Goberdhan P. Dimri

BackgroundThe polycomb group (PcG) protein BMI1 is an important regulator of development. Additionally, aberrant expression of BMI1 has been linked to cancer stem cell phenotype and oncogenesis. In particular, its overexpression has been found in several human malignancies including breast cancer. Despite its established role in stem cell maintenance, cancer and development, at present not much is known about the functional domains of BMI1 oncoprotein. In the present study, we carried out a deletion analysis of BMI1 to identify its negative regulatory domain.ResultsWe report that deletion of the C-terminal domain of BMI1, which is rich in proline-serine (PS) residues and previously described as PEST-like domain, increased the stability of BMI1, and promoted its pro-oncogenic activities in human mammary epithelial cells (HMECs). Specifically, overexpression of a PS region deleted mutant of BMI1 increased proliferation of HMECs and promoted an epithelial-mesenchymal transition (EMT) phenotype in the HMECs. Furthermore, when compared to the wild type BMI1, exogenous expression of the mutant BMI1 led to a significant downregulation of p16INK4a and an efficient bypass of cellular senescence in human diploid fibroblasts.ConclusionsIn summary, our data suggest that the PS domain of BMI1 is involved in its stability and that it negatively regulates function of BMI1 oncoprotein. Our results also suggest that the PS domain of BMI1 could be targeted for the treatment of proliferative disorders such as cancer and aging.


PLOS ONE | 2016

Identification of Specific miRNA Signature in Paired Sera and Tissue Samples of Indian Women with Triple Negative Breast Cancer

Seema Thakur; Rajesh Kumar Grover; Sanjay Gupta; Ajay K. Yadav; Bhudev C. Das

Of several subtypes of breast cancer, triple negative breast cancer (TNBC) is a highly aggressive tumor that lacks expression of hormone receptors for estrogen, progesterone and human epidermal growth factor receptor 2 and shows a worst prognosis. The small noncoding RNAs (miRNAs) considered as master regulator of gene expression play a key role in cancer initiation, progression and drug resistance and have emerged as attractive molecular biomarkers for diagnosis, prognosis and treatment targets in cancer. We have done expression profiling of selected miRNAs in paired serum and tissue samples of TNBC patients and corresponding cell lines and compared with that of other subtypes, in order to identify novel serum miRNA biomarkers for early detection and progression of TNBC. A total of 85 paired tumor tissues and sera with an equal number of adjacent normal tissue margins and normal sera from age matched healthy women including tissue and sera samples from 15 benign fibroadenomas were employed for the study. We report for the first time an extremely high prevalence (73.9%) of TNBC in premenopausal women below 35 years of age and a significant altered expression of a panel of three specific oncogenic miRNAs- miR-21, miR-221, miR-210, and three tumor suppressor miRNAs- miR-195, miR-145 and Let-7a in both tissues and corresponding sera of TNBC patients when compared with triple positive breast cancer (TPBC) patients. While miR-21, miR-221 and miR-210 showed significant over-expression, miR-195 and miR-145 were downregulated and well correlated with various clinicopathological and demographic risk factors, tumor grade, clinical stage and hormone receptor status. Interestingly, despite being a known tumor suppressor, Let-7a showed a significant overexpression in TNBCs. It is suggested that this panel of six miRNA signature may serve as a minimally invasive biomarker for an early detection of TNBC patients.


Tumor Biology | 2016

Synergistic increase in efficacy of a combination of 2-deoxy- d -glucose and cisplatin in normoxia and hypoxia: switch from autophagy to apoptosis

Akansha Jalota; Mukesh Kumar; Bhudev C. Das; Ajay K. Yadav; Kunzang Chosdol; Subrata Sinha

Resistance to drugs, which is aggravated by hypoxia, is a well-known feature of tumors. The combination of drug exposure and hypoxia can give rise to several survival strategies in the exposed cells. Glioblastoma multiforme (GBM) is among the most hypoxic of solid tumors, and we have used glial cells to identify a drug combination that would be synergistically effective in these cells under both normoxia and hypoxia. Cisplatin (CP) and 2-deoxy-d-glucose (2-DG), which have been used for second-line therapy and for preclinical research, are relatively ineffective as single agents. During in vitro experiments with A172 and LN229 cells, there was increased resistance to both drugs under hypoxia. However, the combination of CP and 2-DG showed a synergistic effect in reducing cell viability under both normoxia and hypoxia, with a combination index of less than 1. Increased autophagy is a distinct feature of the response to 2-DG. However, autophagic markers were reduced, and apoptotic markers were upregulated by the combination, indicating a switch over from autophagic to apoptotic pathways with reduction in endoplasmic reticulum (ER) stress. The combination also resulted in a decrease of pAKT levels. The effect of CP in the combination was replicated by the prototype AKT inhibitor LY294002, further supporting the role of AKT inhibition in the synergism. Combination of 2-DG with CP, or possibly an AKT inhibitor, can prove to be an effective rational combination for reducing chemoresistance under both normoxic and hypoxic conditions in gliomas.


Oncotarget | 2018

A drug combination targeting hypoxia induced chemoresistance and stemness in glioma cells

Akansha Jalota; Mukesh Kumar; Bhudev C. Das; Ajay K. Yadav; Kunzang Chosdol; Subrata Sinha

Hypoxia is a characteristic of solid tumors especially Glioblastoma and is critical to chemoresistance. Cancer stem cells present in hypoxic niches are known to be a major cause of the progression, metastasis and relapse. We tried to identify synergistic combinations of drugs effective in both hypoxia and normoxia in tumor cells as well as in cancer stem cells. Since COX-2 is over-expressed in subset of glioblastoma and is also induced in hypoxia, we studied combinations of a prototype Cyclooxygenase (COX-2) inhibitor, NS-398 with various drugs (BCNU, Temozolomide, 2-Deoxy-D-glucose and Cisplatin) for their ability to abrogate chemoresistance under both severe hypoxia (0.2% O2) and normoxia (20% O2) in glioma cells. The only effective combination was of NS-398 and BCNU which showed a synergistic effect in both hypoxia and normoxia. This synergism was evident at sub-lethal doses for either of the single agent. The effectiveness of the combination resulted from increased pro- apoptotic and decreased anti-apoptotic molecules and increased caspase activity. PGE2 levels, a manifestation of COX-2 activity were increased during hypoxia, but were reduced by the combination during both hypoxia and normoxia. The combination reduced the levels of epithelial-mesenchymal transition (EMT) markers. It also resulted in a greater reduction of cell migration. While single drugs could reduce the number of gliomaspheres, the combination successfully abrogated their formation. The combination also resulted in a greater reduction of the cancer stem cell marker CD133. This combination could be a prototype of possible therapy in a tumor with a high degree of hypoxia like glioma.


Journal of Cancer | 2018

Antagonistic role of GSK3 isoforms in glioma survival

Vidhi Vashishtha; Nupur Jinghan; Ajay K. Yadav

GSK3 (Glycogen Synthase Kinase-3) function in brain is contributed by two distinct gene GSK3 alpha and GSK3 beta. Present findings indicate that imbalance in between GSK3 alpha and beta isoform contributes oncogenesis. In gliomas, GSK3 isoform specific functions are different then as reported for melanoma, prostate cancer, lung cancer etc. Both the isoforms of GSK3 are inversely regulating hnRNPA1 (RNA binding protein) expression, subsequently affecting RNA alternative splicing (BIN1, RON, Mcl1, PKM) in gliomas. Elevated expression of c-Myc, hnRNPA1, Phospo-ERK1/2 and Cyclin D1 in GSK3 alpha knock down cells, resembles GSK3 beta isoform overexpressing glioma cells, promotes cell survival. HnRNPA1 dependent survival signaling pathway were elaborated using si RNA approach or by over expressing cloned hnRNPA1 gene in U87 glioma cells. Therefore, performed study empirically support GSK3β inhibition along with restoration of GSK3α would be a good strategy to target gliomas.


Cancer Research | 2018

Abstract 1835: PPARγ agonist in combination withbcr/abltyrosine kinase inhibitors in patients of chronic myeloid leukemia in chronic phase with suboptimal molecular response

Hemant Malhotra; Ajay K. Yadav; Ashwin Mathur; Debashish Biswas; Bharti Malhotra

Introduction & background: Ten to 20 % of patients of Chronic Myeloid Leukemia in chronic phase (CML CP) have suboptimal molecular response (MR) to first line Imatinib maleate (IM). Treatment options include IM dose increase or switch to a 2nd generation tyrosine kinase inhibitor (TKI), Nilotinib or Dasatinib. Recently, synergy has been demonstrated when PPAR γ agonists are added to TKIs. We describe our initial results on 15 patients of CML CP treated with the combination of IM and pioglitazone, a PPAR γ agonist. Patients and methods: Fifteen patients of CML CP with suboptimal MR (bcr/abl:abl RQ-PCR between 1 to 10) after more than two years of IM were recruited in this pilot study. Because of economic considerations, these patients were not candidates for 2nd gen. TKIs. Patients given IM 600 mg/day and pioglitazone 30 mg/day. Blood counts and biochemistry monitored monthly, bcr/abl tested every 3 months using a cartridge based IS assay using the Cepheid GenXpert. Results & conclusions: Twelve of the 15 patients achieved significant MR, with 6/16 achieving a major MR at 9 months. Only 3/15 did not show a response (Table). Treatment with pioglitazone was well tolerated. One patient was not analysed due to intolerance to pioglitazone are first dose. Two patients had grade 1 elevation of hepatic enzymes which returned to normal after one week treatment cessation. We conclude that the combination of imatinib with pioglitazone is effective and well tolerated in patients with a sub-optimal MR to TKI in patients with CML-CP. The combination could be a cost-effective strategy in treating imatinib non/sub-optimal responders in the developing world. The combination needs further and larger studies for confirmation and evaluation of the mechanisms of the synergy. Citation Format: Hemant Malhotra, Ajay Yadav, Ashwin Mathur, Debashish Biswas, Bharti Malhotra. PPARγ agonist in combination with bcr/abl tyrosine kinase inhibitors in patients of chronic myeloid leukemia in chronic phase with suboptimal molecular response [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1835.

Collaboration


Dive into the Ajay K. Yadav's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akansha Jalota

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Kunzang Chosdol

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Subrata Sinha

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar

Adrienne C. Scheck

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge