Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajay P. Nayak is active.

Publication


Featured researches published by Ajay P. Nayak.


Annals of Allergy Asthma & Immunology | 2013

Characterization of Cannabis sativa allergens

Ajay P. Nayak; Brett J. Green; Gordon L. Sussman; Noam Berlin; Hemant Lata; Suman Chandra; Mahmoud A. ElSohly; Justin M. Hettick; Donald H. Beezhold

BACKGROUND Allergic sensitization to Cannabis sativa is rarely reported, but the increasing consumption of marijuana has resulted in an increase in the number of individuals who become sensitized. To date, little is known about the causal allergens associated with C sativa. OBJECTIVE To characterize marijuana allergens in different components of the C sativa plant using serum IgE from marijuana sensitized patients. METHODS Serum samples from 23 patients with a positive skin prick test result to a crude C sativa extract were evaluated. IgE reactivity was variable between patients and C sativa extracts. IgE reactivity to C sativa proteins in Western blots was heterogeneous and ranged from 10 to 70 kDa. Putative allergens derived from 2-dimensional gels were identified. RESULTS Prominent IgE reactive bands included a 23-kDa oxygen-evolving enhancer protein 2 and a 50-kDa protein identified to be the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. Additional proteins were identified in the proteomic analysis, including those from adenosine triphosphate synthase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and luminal binding protein (heat shock protein 70), suggesting these proteins are potential allergens. Deglycosylation studies helped refine protein allergen identification and demonstrated significant IgE antibodies against plant oligosaccharides that could help explain cross-reactivity. CONCLUSION Identification and characterization of allergens from C sativa may be helpful in further understanding allergic sensitization to this plant species.


Scientific Reports | 2017

Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice

Pawan Sharma; Roslyn Yi; Ajay P. Nayak; Nadan Wang; Francesca Tang; Morgan J. Knight; Shi Pan; Brian Oliver; Deepak A. Deshpande

Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.


PLOS ONE | 2014

A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia

Amanda D. Buskirk; Brett J. Green; Angela R. Lemons; Ajay P. Nayak; W. Travis Goldsmith; Michael L. Kashon; Stacey E. Anderson; Justin M. Hettick; Steven P. Templeton; Dori R. Germolec; Donald H. Beezhold

Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants.


Journal of Immunotoxicology | 2014

Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent mouse model of repeated exposures

Amanda D. Buskirk; Steven P. Templeton; Ajay P. Nayak; Justin M. Hettick; Brandon F. Law; Brett J. Green; Donald H. Beezhold

Abstract Aspergillus fumigatus is a filamentous fungus that produces abundant pigmented conidia. Several fungal components have been identified as virulence factors, including melanin; however, the impact of these factors in a repeated exposure model resembling natural environmental exposures remains unknown. This study examined the role of fungal melanin in the stimulation of pulmonary immune responses using immunocompetent BALB/c mice in a multiple exposure model. It compared conidia from wild-type A. fumigatus to two melanin mutants of the same strain, Δarp2 (tan) or Δalb1 (white). Mass spectrometry-based analysis of conidial extracts demonstrated that there was little difference in the protein fingerprint profiles between the three strains. Field emission scanning electron microscopy demonstrated that the immunologically inert Rodlet A layer remained intact in melanin-deficient conidia. Thus, the primary difference between the strains was the extent of melanization. Histopathology indicated that each A. fumigatus strain induced lung inflammation, regardless of the extent of melanization. In mice exposed to Δalb1 conidia, an increase in airway eosinophils and a decrease in neutrophils and CD8+ IL-17+ (Tc17) cells were observed. Additionally, it was shown that melanin mutant conidia were more rapidly cleared from the lungs than wild-type conidia. These data suggest that the presence of fungal melanin may modulate the pulmonary immune response in a mouse model of repeated exposures to A. fumigatus conidia.


Applied and Environmental Microbiology | 2013

Aspergillus Collagen-Like Genes (acl): Identification, Sequence Polymorphism, and Assessment for PCR-Based Pathogen Detection

Kiril Tuntevski; Brandon C. Durney; Anna K. Snyder; P. Rocco LaSala; Ajay P. Nayak; Brett J. Green; Donald H. Beezhold; Rita V. M. Rio; Lisa A. Holland; Slawomir Lukomski

ABSTRACT The genus Aspergillus is a burden to public health due to its ubiquitous presence in the environment, its production of allergens, and wide demographic susceptibility among cystic fibrosis, asthmatic, and immunosuppressed patients. Current methods of detection of Aspergillus colonization and infection rely on lengthy morphological characterization or nonstandardized serological assays that are restricted to identifying a fungal etiology. Collagen-like genes have been shown to exhibit species-specific conservation across the noncollagenous regions as well as strain-specific polymorphism in the collagen-like regions. Here we assess the conserved region of the Aspergillus collagen-like (acl) genes and explore the application of PCR amplicon size-based discrimination among the five most common etiologic species of the Aspergillus genus, including Aspergillus fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus. Genetic polymorphism and phylogenetic analysis of the aclF1 gene were additionally examined among the available strains. Furthermore, the applicability of the PCR-based assay to identification of these five species in cultures derived from sputum and bronchoalveolar fluid from 19 clinical samples was explored. Application of capillary electrophoresis on nanogels was additionally demonstrated to improve the discrimination between Aspergillus species. Overall, this study demonstrated that Aspergillus acl genes could be used as PCR targets to discriminate between clinically relevant Aspergillus species. Future studies aim to utilize the detection of Aspergillus acl genes in PCR and microfluidic applications to determine the sensitivity and specificity for the identification of Aspergillus colonization and invasive aspergillosis in immunocompromised subjects.


Clinical and Vaccine Immunology | 2011

Monoclonal Antibodies to Hyphal Exoantigens Derived from the Opportunistic Pathogen Aspergillus terreus

Ajay P. Nayak; Brett J. Green; Erika Janotka; Justin M. Hettick; Sherri Friend; S.J. Vesper; Detlef Schmechel; Donald H. Beezhold

ABSTRACT Aspergillus terreus has been difficult to identify in cases of aspergillosis, and clinical identification has been restricted to the broad identification of aspergillosis lesions in affected organs or the detection of fungal carbohydrates. As a result, there is a clinical need to identify species-specific biomarkers that can be used to detect invasive A. terreus disease. Monoclonal antibodies (MAbs) were developed to a partially purified preparation of cytolytic hyphal exoantigens (HEA) derived from A. terreus culture supernatant (CSN). Twenty-three IgG1 isotype murine MAbs were developed and tested for cross-reactivity against hyphal extracts of 54 fungal species. Sixteen MAbs were shown to be specific for A. terreus. HEA were detected in conidia, hyphae, and in CSN of A. terreus. HEA were expressed in high levels in the hyphae during early stages of A. terreus growth at 37°C, whereas at room temperature the expression of HEA peaked by days 4 to 5. Expression kinetics of HEA in CSN showed a lag, with peak levels at later time points at room temperature and 37°C than in hyphal extracts. Serum spiking experiments demonstrated that human serum components do not inhibit detection of the HEA epitopes by MAb enzyme-linked immunosorbent assay (ELISA). Immunoprecipitation and proteomic analysis demonstrated that MAbs 13E11 and 12C4 immunoprecipitated a putative uncharacterized leucine aminopeptidase (Q0CAZ7), while MAb 19B2 recognized a putative dipeptidyl-peptidase V (DPP5). Studies using confocal laser scanning microscopy showed that the uncharacterized leucine aminopeptidase mostly localized to extracellular matrix structures while dipeptidyl-peptidase V was mostly confined to the cytoplasm.


Toxicological Sciences | 2014

Toluene Diisocyanate (TDI) Disposition and Co-Localization of Immune Cells in Hair Follicles

Ajay P. Nayak; Justin M. Hettick; Paul D. Siegel; Stacey E. Anderson; Carrie M. Long; Brett J. Green; Donald H. Beezhold

Diisocyanates (dNCOs) are potent chemical allergens utilized in various industries. It has been proposed that skin exposure to dNCOs produces immune sensitization leading to work-related asthma and allergic disease. We examined dNCOs sensitization by using a dermal murine model of toluene diisocyanate (TDI) exposure to characterize the disposition of TDI in the skin, identify the predominant haptenated proteins, and discern the associated antigen uptake by dendritic cells. Ears of BALB/c mice were dosed once with TDI (0.1% or 4% v/v acetone). Ears and draining lymph nodes (DLNs) were excised at selected time points between 1 h and 15 days post-exposure and were processed for histological, immunohistochemical, and proteomic analyses. Monoclonal antibodies specific for TDI-haptenated protein (TDI-hp) and antibodies to various cell markers were utilized with confocal microscopy to determine co-localization patterns. Histopathological changes were observed following exposure in ear tissue of mice dosed with 4% TDI/acetone. Immunohistochemical staining demonstrated TDI-hp localization in the stratum corneum, hair follicles, and sebaceous glands. TDI-hp were co-localized with CD11b(+) (integrin αM/Mac-1), CD207(+) (langerin), and CD103(+) (integrin αE) cells in the hair follicles and in sebaceous glands. TDI-hp were also identified in the DLN 1 h post-exposure. Cytoskeletal and cuticular keratins along with mouse serum albumin were identified as major haptenated species in the skin. The results of this study demonstrate that the stratum corneum, hair follicles, and associated sebaceous glands in mice are dendritic cell accessible reservoirs for TDI-hp and thus identify a mechanism for immune recognition following epicutaneous exposure to TDI.


Journal of Occupational and Environmental Hygiene | 2014

A Murine Monoclonal Antibody with Broad Specificity for Occupationally Relevant Diisocyanates

Angela R. Lemons; Paul D. Siegel; Morgen Mhike; Brandon F. Law; Justin M. Hettick; Toni A. Bledsoe; Ajay P. Nayak; Donald H. Beezhold; Brett J. Green

Diisocyanates (dNCOs) used in industrial applications are well known low molecular weight allergens. Occupational exposure is associated with adverse health outcomes including allergic sensitization and occupational asthma. In this study, we report the production and initial characterization of a dNCO-hapten specific murine IgM monoclonal antibody (mAb). Female BALB/c mice were immunized intraperitoneally with 25 μg of 4,4′-methylene diphenyl diisocyanate (MDI)-keyhole limpet hemocyanin. Following six biweekly booster immunizations, splenocytes were recovered and fused to Sp2/0-Ag14 murine myeloma cell line for hybridoma production. Hybridomas were then screened in a solid-phase indirect enzyme-linked immunosorbent assay (ELISA) against 40:1 4,4′-MDI– human serum albumin (HSA). mAb reactivity to dNCO-HSA conjugates and dNCO-HSA spiked human serum were characterized using a sandwich ELISA. One hybridoma produced a multimeric IgM mAb (15D4) that reacted with 4,4′-MDI-HSA. Sandwich ELISA analysis demonstrated comparable reactivity with other occupationally relevant dNCO-HSA adducts, including 2,4-toluene diisocyanate (TDI)-HSA, 2,6-TDI-HSA, and 1,6-hexamethylene diisocyanate (HDI)-HSA, but not other electrophilic chemical HSA conjugates. The limit of quantification (LOQ) of 4,4′-MDI-HSA, 2,4-TDI-HSA, 2,6-TDI-HSA, and 1,6-HDI-HSA sandwich ELISAs were 567.2, 172.7, 184.2, and 403.5 ng/mL (8.67, 2.60, 2.77, and 6.07 pmol/mL), respectively. In contrast, experiments using dNCO-supplemented human sera showed an increase in the detectable limit of the assay. A mAb has been produced that has potential utility for detecting mixed diisocyanate exposures in occupational environments. The mAb may have additional utility in the standardization of specific IgE detection immunoassays as well as chromatographic-mass spectrometric methods to enrich dNCO adducted HSA in the plasma of occupationally exposed workers.


Journal of Medical Microbiology | 2012

Development of monoclonal antibodies to recombinant terrelysin and characterization of expression in Aspergillus terreus

Ajay P. Nayak; Brett J. Green; Sherri Friend; Donald H. Beezhold

Aspergillus terreus is an emerging pathogen that mostly affects immunocompromised patients, causing infections that are often difficult to manage therapeutically. Current diagnostic strategies are limited to the detection of fungal growth using radiological methods or biopsy, which often does not enable species-specific identification. There is thus a critical need for diagnostic techniques to enable early and specific identification of the causative agent. In this study, we describe monoclonal antibodies (mAbs) developed to a previously described recombinant form of the haemolysin terrelysin. Sixteen hybridomas of various IgG isotypes were generated to the recombinant protein, of which seven demonstrated reactivity to the native protein in hyphal extracts. Cross-reactivity analysis using hyphal extracts from 29 fungal species, including 12 Aspergillus species and five strains of A. terreus, showed that three mAbs (13G10, 15B5 and 10G4) were A. terreus-specific. Epitope analysis demonstrated mAbs 13G10 and 10G4 recognize the same epitope, PSNEFE, while mAb 15B5 recognizes the epitope LYEGQFHS. Time-course studies showed that terrelysin expression was highest during early hyphal growth and dramatically decreased after mycelial expansion. Immunolocalization studies demonstrated that terrelysin was not only localized within the cytoplasm of hyphae but appeared to be more abundant at the hyphal tip. These findings were confirmed in cultures grown at room temperature as well as at 37 °C. Additionally, terrelysin was detected in the supernatant of A. terreus cultures. These observations suggest that terrelysin may be a candidate biomarker for A. terreus infection.


Clinical & Experimental Allergy | 2016

Subchronic exposures to fungal bioaerosols promotes allergic pulmonary inflammation in naïve mice

Ajay P. Nayak; Brett J. Green; Angela R. Lemons; Nikki B. Marshall; William T. Goldsmith; Michael L. Kashon; Stacey E. Anderson; Dori R. Germolec; D.H. Beezhold

Epidemiological surveys indicate that occupants of mold contaminated environments are at increased risk of respiratory symptoms. The immunological mechanisms associated with these responses require further characterization.

Collaboration


Dive into the Ajay P. Nayak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett J. Green

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Angela R. Lemons

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Justin M. Hettick

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Michael L. Kashon

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Stacey E. Anderson

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Tara L. Croston

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Carrie M. Long

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Nikki B. Marshall

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

W. Travis Goldsmith

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge