Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajay Pandita is active.

Publication


Featured researches published by Ajay Pandita.


Nature | 2010

The mutation spectrum revealed by paired genome sequences from a lung cancer patient

William Lee; Zhaoshi Jiang; Jinfeng Liu; Peter M. Haverty; Yinghui Guan; Jeremy Stinson; Peng Yue; Yan Zhang; Krishna P. Pant; Deepali Bhatt; Connie Ha; Stephanie Johnson; Michael Kennemer; Sankar Mohan; Igor Nazarenko; Colin K. Watanabe; Andrew Sparks; David S. Shames; Robert Gentleman; Frederic J. de Sauvage; Howard M. Stern; Ajay Pandita; Dennis G. Ballinger; Radoje Drmanac; Zora Modrusan; Somasekar Seshagiri; Zemin Zhang

Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60× coverage) and adjacent normal tissue (46×). Comparing the two genomes, we identify a wide variety of somatic variations, including >50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.


Journal of Clinical Oncology | 2011

Evidence for Sequenced Molecular Evolution of IDH1 Mutant Glioblastoma From a Distinct Cell of Origin

Albert Lai; Samir Kharbanda; Whitney B. Pope; Anh Tran; Orestes E. Solis; Franklin Peale; William F. Forrest; Kanan Pujara; Jose Carrillo; Ajay Pandita; Benjamin M. Ellingson; Chauncey W. Bowers; Robert Soriano; Nils Ole Schmidt; Sankar Mohan; William H. Yong; Somasekar Seshagiri; Zora Modrusan; Zhaoshi Jiang; Kenneth D. Aldape; Paul S. Mischel; Linda M. Liau; Cameron Escovedo; Weidong Chen; Phioanh L. Nghiemphu; C. David James; Michael D. Prados; Manfred Westphal; Katrin Lamszus; Timothy F. Cloughesy

PURPOSE Mutation in isocitrate dehydrogenase 1 (IDH1) at R132 (IDH1(R132MUT)) is frequent in low-grade diffuse gliomas and, within glioblastoma (GBM), has been proposed as a marker for GBMs that arise by transformation from lower-grade gliomas, regardless of clinical history. To determine how GBMs arising with IDH1(R132MUT) differ from other GBMs, we undertook a comprehensive comparison of patients presenting clinically with primary GBM as a function of IDH1(R132) mutation status. PATIENTS AND METHODS In all, 618 treatment-naive primary GBMs and 235 lower-grade diffuse gliomas were sequenced for IDH1(R132) and analyzed for demographic, radiographic, anatomic, histologic, genomic, epigenetic, and transcriptional characteristics. RESULTS Investigation revealed a constellation of features that distinguishes IDH1(R132MUT) GBMs from other GBMs (including frontal location and lesser extent of contrast enhancement and necrosis), relates them to lower-grade IDH1(R132MUT) gliomas, and supports the concept that IDH1(R132MUT) gliomas arise from a neural precursor population that is spatially and temporally restricted in the brain. The observed patterns of DNA sequence, methylation, and copy number alterations support a model of ordered molecular evolution of IDH1(R132MUT) GBM in which the appearance of mutant IDH1 protein is an initial event, followed by production of p53 mutant protein, and finally by copy number alterations of PTEN and EGFR. CONCLUSION Although histologically similar, GBMs arising with and without IDH1(R132MUT) appear to represent distinct disease entities that arise from separate cell types of origin as the result of largely nonoverlapping sets of molecular events. Optimal clinical management should account for the distinction between these GBM disease subtypes.


PLOS ONE | 2010

Molecular Biomarker Analyses Using Circulating Tumor Cells

Elizabeth Punnoose; Siminder K. Atwal; Jill M. Spoerke; Heidi Savage; Ajay Pandita; Ru-Fang Yeh; Andrea Pirzkall; Bernard M. Fine; Lukas Amler; Daniel S. Chen; Mark R. Lackner

Background Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs) isolated from blood of metastatic cancer patients hold significant promise in this regard. Methodology/Principal Findings Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch® and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF). We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89%) we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%), HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer. Conclusions/Significance Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC capture efficiency to enable routine biomarker analysis from CTCs.


Molecular Cancer Research | 2009

Exon Array Profiling Detects EML4-ALK Fusion in Breast, Colorectal, and Non―Small Cell Lung Cancers

Eva Lin; Li Li; Yinghui Guan; Robert Soriano; Celina Sanchez Rivers; Sankar Mohan; Ajay Pandita; Jerry Tang; Zora Modrusan

The echinoderm microtubule-associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK) fusion gene has been identified as an oncogene in a subset of non–small cell lung cancers (NSCLC). We used profiling of cancer genomes on an exon array to develop a novel computational method for the global search of gene rearrangements. This approach led to the detection of EML4-ALK fusion in breast and colorectal carcinomas in addition to NSCLC. Screening of a large collection of patient tumor samples showed the presence of EML4-ALK fusion in 2.4% of breast (5 of 209), 2.4% of colorectal (2 of 83), and in 11.3% of NSCLC (12 of 106). Besides previously known EML4-ALK variants 1 (E13; A20) and 2 (E20; A20), a novel variant E21; A20 was found in colorectal carcinoma. The presence of an EML-ALK rearrangement was verified by identifying genomic fusion points in tumor samples representative of breast, colon, and NSCLC. EML4-ALK translocation was also confirmed by fluorescence in situ hybridization assay, which revealed its substantial heterogeneity in both primary tumors and tumor-derived cell lines. To elucidate the functional significance of EML4-ALK, we examined the growth of cell lines harboring the fusion following EML4 and ALK silencing by small interfering RNA. Significant growth inhibition was observed in some but not all cell lines, suggesting their variable dependence on ALK-mediated cell survival signaling. Collectively, these findings show the recurrence of EML4-ALK fusion in multiple solid tumors and further substantiate its role in tumorigenesis. (Mol Cancer Res 2009;7(9):1466–76)


Genes, Chromosomes and Cancer | 2004

Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR.

Ajay Pandita; Kenneth D. Aldape; Gelareh Zadeh; Abhijit Guha; C. David James

Despite the high incidence of EGFR amplification in patient glioblastoma multiforme (GBM) tissues, only a single GBM cell line, of the many described in the literature, is known to contain and maintain amplified EGFR. Because EGFR mutations in GBM manifest primarily, if not exclusively, in amplified form, it follows that the availability of cell lines with mutation of endogenous EGFR would also be in short supply. In fact, there are no GBM cell lines harboring the common EGFR mutants described in patient GBMs. These observations suggest that in vivo environments select for EGFR amplification, whereas in vitro environments, specifically cell cultures, select against this gene alteration. To contrast directly the fates of EGFR amplification in vivo and in vitro, as well as to examine potential relationships between EGFR amplification and mutation, we have established and maintained GBM explants as xenografts by serial passaging in nude mice. Analysis of EGFR copy number and EGFR mutation status in 11 patient tumors and their corresponding xenografts, as well as the monitoring of EGFR copy number during the establishment of a GBM cell line from a xenograft with amplified EGFR, indicated that selection for EGFR amplification is an in vivo phenomenon. Furthermore, our data indicated that EGFR mutation occurs only in tumors with EGFR amplification and showed that the selection of amplified mutant EGFR over amplified wild‐type EGFR as a xenograft occurred rapidly and completely during tumor propagation.


Clinical Cancer Research | 2006

Use of an Orthotopic Xenograft Model for Assessing the Effect of Epidermal Growth Factor Receptor Amplification on Glioblastoma Radiation Response

Jann N. Sarkaria; Brett L. Carlson; Mark A. Schroeder; Patrick T. Grogan; Paul D. Brown; Caterina Giannini; Karla V. Ballman; Caspar J. Kitange; Abjahit Guha; Ajay Pandita; C. David James

Purpose: The influence of epidermal growth factor receptor (EGFR) amplification on glioblastoma patient prognosis following definitive radiotherapy has been extensively investigated in clinical studies, and yet the relationship between EGFR status and radiation response remains unclear. The intent of the current study was to address this relationship using several EGFR-amplified glioblastoma xenografts in an orthotopic athymic mouse model. Experimental Design: We examined the effect of radiation on the survival of nude mice with intracranial xenografts derived from 13 distinct patient tumors, 7 of which have amplified EGFR. Mice with established intracranial tumors were randomized to sham treatment or 12-Gy radiation in six fractions delivered over 12 days. Results: For six of the xenografts, radiation of mice with intracranial tumor significantly extended survival, and four of these xenografts had EGFR amplification. For seven other xenografts, radiation treatment did not significantly extend survival, and three of these, including GBM12, had EGFR amplification. Similar to EGFR, the tumor genetic status of p53 or PTEN did not show preferential association with radiation-sensitive or radiation-resistant xenografts whereas hyperphosphorylation of Akt on Ser473 was associated with increased radioresistance. To specifically investigate whether inhibition of EGFR kinase activity influences radiation response, we examined combined radiation and EGFR inhibitor treatment in mice with intracranial GBM12. The combination of oral erlotinib administered concurrently with radiation resulted only in additive survival benefit relative to either agent alone. Conclusions: Our results indicate that EGFR amplification, as a biomarker, is not singularly predictive of glioblastoma response to radiation therapy, nor does the inhibition of EGFR enhance the intrinsic radiation responsiveness of glioblastoma tumors. However, efficacious EGFR inhibitor and radiation monotherapy regimens can be used in combination to achieve additive antitumor effect against a subset of glioblastoma.


Clinical Cancer Research | 2012

Phosphoinositide 3-kinase (PI3K) Pathway Alterations are Associated with Histologic Subtypes and are Predictive of Sensitivity to PI3K Inhibitors in Lung Cancer Preclinical Models

Jill M. Spoerke; Carol O'Brien; Ling Huw; Hartmut Koeppen; Jane Fridlyand; Rainer K. Brachmann; Peter M. Haverty; Ajay Pandita; Sankar Mohan; Deepak Sampath; Lori S. Friedman; Leanne Ross; Garret Hampton; Lukas Amler; David S. Shames; Mark R. Lackner

Purpose: Class 1 phosphatidylinositol 3-kinase (PI3K) plays a major role in cell proliferation and survival in a wide variety of human cancers. Here, we investigated biomarker strategies for PI3K pathway inhibitors in non–small-cell lung cancer (NSCLC). Experimental Design: Molecular profiling for candidate PI3K predictive biomarkers was conducted on a collection of NSCLC tumor samples. Assays included comparative genomic hybridization, reverse-transcription polymerase chain reaction gene expression, mutation detection for PIK3CA and other oncogenes, PTEN immunohistochemistry, and FISH for PIK3CA copy number. In addition, a panel of NSCLC cell lines characterized for alterations in the PI3K pathway was screened with PI3K and dual PI3K/mTOR inhibitors to assess the preclinical predictive value of candidate biomarkers. Results: PIK3CA amplification was detected in 37% of squamous tumors and 5% of adenocarcinomas, whereas PIK3CA mutations were found in 9% of squamous and 0% of adenocarcinomas. Total loss of PTEN immunostaining was found in 21% of squamous tumors and 4% of adenocarcinomas. Cell lines harboring pathway alterations (receptor tyrosine kinase activation, PI3K mutation or amplification, and PTEN loss) were exquisitely sensitive to the PI3K inhibitor GDC-0941. A dual PI3K/mTOR inhibitor had broader activity across the cell line panel and in tumor xenografts. The combination of GDC-0941 with paclitaxel, erlotinib, or a mitogen-activated protein–extracellular signal-regulated kinase inhibitor had greater effects on cell viability than PI3K inhibition alone. Conclusions: Candidate biomarkers for PI3K inhibitors have predictive value in preclinical models and show histology-specific alterations in primary tumors, suggesting that distinct biomarker strategies may be required in squamous compared with nonsquamous NSCLC patient populations. Clin Cancer Res; 18(24); 6771–83. ©2012 AACR.


Genes, Chromosomes and Cancer | 2003

Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas.

Jane Bayani; Maria Zielenska; Ajay Pandita; Khaldoun Al-Romaih; Jana Karaskova; Karen Harrison; Julia A. Bridge; Poul H. Sorensen; Paul S. Thorner; Jeremy A. Squire

Conventional cytogenetic studies have shown that osteosarcomas (OSs) are often highly aneuploid, with a large number of both structural and numerical chromosomal alterations. To investigate the complexity of OS karyotypes in detail, we applied spectral karyotyping (SKY) to a series of 14 primary OS tumors and four established OS cell lines. A total of 531 rearrangements were identified by SKY, of which 300 breakpoints could be assigned to a specific chromosome band. There was an average of 38.5 breakpoints identified by SKY per primary tumor. Chromosome 20 was involved in a disproportionately high number of structural rearrangements, with 38 different aberrations being detected. Chromosomal rearrangements between chromosomes 20 and 8 were evident in four tumors. FISH analysis using a 20q13 subtelomeric probe identified frequent involvement of 20q in complex structural rearrangements of OS cell lines. Characterization of the structural aberrations of chromosomes 8 and 17 by use of SKY demonstrated frequent duplication or partial gains of chromosome bands 8q23–24 and 17p11–13. Other chromosomes frequently involved in structural alteration were chromosomes 1 (47 rearrangements) and 6 (38 rearrangements). Centromeric rearrangements often involving chromosomes 1, 6, 13, 14, 17, and 20 were present. Four of the 14 primary OS tumors were characterized by nonclonal changes that included both structural and numerical alterations. In summary, OS tumors have a very high frequency of structural and numerical alterations, compounded by gross changes in ploidy. This intrinsic karyotype instability leads to a diversity of rearrangements and the acquisition of composite chromosomal rearrangements, with the highest frequency of alteration leading to gain of 8q23–24 and 17p11–13 and rearrangement of 20q. These findings suggest that specific sequences mapping to these chromosomal regions will likely have a role in the development and progression of OS.


Nature | 2011

COP1 is a tumour suppressor that causes degradation of ETS transcription factors

Alberto C. Vitari; Kevin G. Leong; Kim Newton; Cindy Yee; Karen O’Rourke; Jinfeng Liu; Lilian Phu; Rajesh Vij; Ronald E. Ferrando; Suzana S. Couto; Sankar Mohan; Ajay Pandita; Jo-Anne Hongo; David Arnott; Ingrid E. Wertz; Wei-Qiang Gao; Dorothy French; Vishva M. Dixit

The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.


Cancer Research | 2008

Functional Genomics Identifies ABCC3 as a Mediator of Taxane Resistance in HER2-Amplified Breast Cancer

Carol O'Brien; Guy Cavet; Ajay Pandita; Xiaolan Hu; Lauren Haydu; Sankar Mohan; Karen Toy; Celina Sanchez Rivers; Zora Modrusan; Lukas C. Amler; Mark R. Lackner

Breast cancer is a heterogeneous disease with distinct molecular subtypes characterized by differential response to targeted and chemotherapeutic agents. Enhanced understanding of the genetic alterations characteristic of different subtypes is needed to pave the way for more personalized administration of therapeutic agents. We have taken a functional genomics approach using a well-characterized panel of breast cancer cell lines to identify putative biomarkers of resistance to antimitotic agents such as paclitaxel and monomethyl-auristatin-E (MMAE). In vitro studies revealed a striking difference in sensitivity to these agents between cell lines from different subtypes, with basal-like cell lines being significantly more sensitive to both agents than luminal or HER2-amplified cell lines. Genome-wide association studies using copy number data from Affymetrix single nucleotide polymorphism arrays identified amplification of the chromosome 17q21 region as being highly associated with resistance to both paclitaxel and MMAE. An unbiased approach consisting of RNA interference and high content analysis was used to show that amplification and concomitant overexpression of the gene encoding the ABCC3 drug transporter is responsible for conferring in vitro resistance to paclitaxel and MMAE. We also show that amplification of ABCC3 is present in primary breast tumors and that it occurs predominantly in HER2-amplified and luminal tumors, and we report on development of a specific fluorescence in situ hybridization assay that may have utility as a predictive biomarker of taxane resistance in breast cancer.

Collaboration


Dive into the Ajay Pandita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas C. Amler

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge