Ajay Ram Srimath Kandada
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajay Ram Srimath Kandada.
Nature Communications | 2014
Valerio D’Innocenzo; Giulia Grancini; Marcelo J. P. Alcocer; Ajay Ram Srimath Kandada; Samuel D. Stranks; Michael M. Lee; Guglielmo Lanzani; Henry J. Snaith; Annamaria Petrozza
Excitonic solar cells, within which bound electron-hole pairs have a central role in energy harvesting, have represented a hot field of research over the last two decades due to the compelling prospect of low-cost solar energy. However, in such cells, exciton dissociation and charge collection occur with significant losses in energy, essentially due to poor charge screening. Organic-inorganic perovskites show promise for overcoming such limitations. Here, we use optical spectroscopy to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV. We show that such a value is consistent with almost full ionization of the exciton population under photovoltaic cell operating conditions. However, increasing the total photoexcitation density, excitonic species become dominant, widening the perspective of this material for a host of optoelectronic applications.
Energy and Environmental Science | 2015
Juan Pablo Correa Baena; Ludmilla Steier; Wolfgang Tress; Michael Saliba; Stefanie Neutzner; Taisuke Matsui; Fabrizio Giordano; T. Jesper Jacobsson; Ajay Ram Srimath Kandada; Shaik M. Zakeeruddin; Annamaria Petrozza; Antonio Abate; Mohammad Khaja Nazeeruddin; Michael Grätzel; Anders Hagfeldt
The simplification of perovskite solar cells (PSCs), by replacing the mesoporous electron selective layer (ESL) with a planar one, is advantageous for large-scale manufacturing. PSCs with a planar TiO2 ESL have been demonstrated, but these exhibit unstabilized power conversion efficiencies (PCEs). Herein we show that planar PSCs using TiO2 are inherently limited due to conduction band misalignment and demonstrate, with a variety of characterization techniques, for the first time that SnO2 achieves a barrier-free energetic configuration, obtaining almost hysteresis-free PCEs of over 18% with record high voltages of up to 1.19 V.
Journal of the American Chemical Society | 2014
Valerio D’Innocenzo; Ajay Ram Srimath Kandada; Michele De Bastiani; Marina Gandini; Annamaria Petrozza
We report about the relationship between the morphology and luminescence properties of methylammonium lead trihalide perovskite thin films. By tuning the average crystallite dimension in the film from tens of nanometers to a few micrometers, we are able to tune the optical band gap of the material along with its photoluminescence lifetime. We demonstrate that larger crystallites present smaller band gap and longer lifetime, which correlates to a smaller radiative bimolecular recombination coefficient. We also show that they present a higher optical gain, becoming preferred candidates for the realization of CW lasing devices.
Journal of the American Chemical Society | 2016
Quinten A. Akkerman; Silvia G. Motti; Ajay Ram Srimath Kandada; Edoardo Mosconi; Valerio D’Innocenzo; Giovanni Bertoni; Sergio Marras; Laura Miranda; Filippo De Angelis; Annamaria Petrozza; Mirko Prato; Liberato Manna
We report a colloidal synthesis approach to CsPbBr3 nanoplatelets (NPLs). The nucleation and growth of the platelets, which takes place at room temperature, is triggered by the injection of acetone in a mixture of precursors that would remain unreactive otherwise. The low growth temperature enables the control of the plate thickness, which can be precisely tuned from 3 to 5 monolayers. The strong two-dimensional confinement of the carriers at such small vertical sizes is responsible for a narrow PL, strong excitonic absorption, and a blue shift of the optical band gap by more than 0.47 eV compared to that of bulk CsPbBr3. We also show that the composition of the NPLs can be varied all the way to CsPbBr3 or CsPbI3 by anion exchange, with preservation of the size and shape of the starting particles. The blue fluorescent CsPbCl3 NPLs represent a new member of the scarcely populated group of blue-emitting colloidal nanocrystals. The exciton dynamics were found to be independent of the extent of 2D confinement in these platelets, and this was supported by band structure calculations.
Energy and Environmental Science | 2015
Chen Tao; Stefanie Neutzner; Letizia Colella; Sergio Marras; Ajay Ram Srimath Kandada; Marina Gandini; Michele De Bastiani; Giuseppina Pace; Liberato Manna; Mario Caironi; Chiara Bertarelli; Annamaria Petrozza
We present here a planar perovskite solar cell with a stabilized power conversion efficiency (PCE) of 17.6% at the maximum power point and a PCE of 17% extracted from quasi-static J–V with an open-circuit voltage of 1.11 V. Such excellent figures of merit can be achieved by engineering a solution-processed electron buffer layer that does not require high temperature steps. A compact thin film of perovskite absorber is grown onto a PCBM-based electron extraction layer by implementing a novel two-step procedure which preserves the soluble organic interlayer during the deposition of successive layers. We demonstrate that efficient charge extraction is the key for high steady state efficiency in perovskite solar cells with a highly integrable architecture.
Nature Photonics | 2015
Giulia Grancini; Ajay Ram Srimath Kandada; Jarvist M. Frost; Alex J. Barker; Michele De Bastiani; Marina Gandini; Sergio Marras; Guglielmo Lanzani; Aron Walsh; Annamaria Petrozza
Solar cells based on hybrid inorganic-organic halide perovskites have demonstrated high power conversion efficiencies in a range of architectures. The existence and stability of bound electron-hole pairs in these materials, and their role in the exceptional performance of optoelectronic devices, remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modeling as a function of the degree of polycrystallinity and temperature, that the electron-hole interaction is sensitive to the microstructure of the material. The long-range order is disrupted by polycrystalline disorder and the variations in electrostatic potential found for smaller crystals suppress exciton formation, while larger crystals of the same composition demonstrate an unambiguous excitonic state. We conclude that fabrication procedures and morphology strongly influence perovskite behaviour, with both free carrier and excitonic regimes possible, with strong implications for optoelectronic devices.
Energy and Environmental Science | 2016
Tomas Leijtens; Giles E. Eperon; Alex J. Barker; Giulia Grancini; Wei Zhang; James M. Ball; Ajay Ram Srimath Kandada; Henry J. Snaith; Annamaria Petrozza
One of the greatest attributes of metal halide perovskite solar cells is their surprisingly low loss in potential between bandgap and open-circuit voltage, despite the fact that they suffer from a non-negligible density of sub gap defect states. Here, we use a combination of transient and steady state photocurrent and absorption spectroscopy to show that CH3NH3PbI3 films exhibit a broad distribution of electron traps. We show that the trapped electrons recombine with free holes unexpectedly slowly, on microsecond time scales, relaxing the limit on obtainable open-circuit voltage (VOC) under trap-mediated recombination conditions. We find that the observed VOCs in such perovskite solar cells can only be rationalized by considering the slow trap mediated recombination mechanism identified in this work. Our results suggest that existing processing routes may be good enough to enable open circuit voltages approaching 1.3 V in ideal devices with perfect contacts.
European Physical Journal B | 2013
Francesco Scotognella; Giuseppe Della Valle; Ajay Ram Srimath Kandada; M. Zavelani-Rossi; Stefano Longhi; Guglielmo Lanzani; Francesco Tassone
Heavily-doped semiconductor nanocrystals characterized by a tunable plasmonic band have been gaining increasing attention recently. Herein, we introduce this type of materials focusing on their structural and photo-physical properties. Beside their continuous-wave plasmonic response, depicted both theoretically and experimentally, we also review recent results on their transient ultrafast response. This was successfully interpreted by adapting models of the ultrafast response of noble metal nanoparticles.
Journal of the American Chemical Society | 2017
Daniele Cortecchia; Stefanie Neutzner; Ajay Ram Srimath Kandada; Edoardo Mosconi; Daniele Meggiolaro; Filippo De Angelis; Cesare Soci; Annamaria Petrozza
Only a selected group of two-dimensional (2D) lead-halide perovskites shows a peculiar broad-band photoluminescence. Here we show that the structural distortions of the perovskite lattice can determine the defectivity of the material by modulating the defect formation energies. By selecting and comparing two archetype systems, namely, (NBT)2PbI4 and (EDBE)PbI4 perovskites (NBT = n-butylammonium and EDBE = 2,2-(ethylenedioxy)bis(ethylammonium)), we find that only the latter, subject to larger deformation of the Pb-X bond length and X-Pb-X bond angles, sees the formation of VF color centers whose radiative decay ultimately leads to broadened PL. These findings highlight the importance of structural engineering to control the optoelectronic properties of this class of soft materials.
Scientific Reports | 2013
Ajay Ram Srimath Kandada; Giulia Grancini; Annamaria Petrozza; Stefano Perissinotto; Daniele Fazzi; Sai Santosh Kumar Raavi; Guglielmo Lanzani
It is common knowledge that poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend, a prototype system for bulk heterojunction (BHJ) solar cells, consists of a network of tens of nanometers-large donor-rich and acceptor-rich phases separated by extended finely intermixed border regions where PCBM diffuse into P3HT. Here we specifically address the photo-induced dynamics in a 10 nm thin P3HT/PCBM blend that consists of the intermixed region only. Using the multi-pass transient absorption technique (TrAMP) that enables us to perform ultra high sensitive measurements, we find that the primary process upon photoexcitation is ultrafast energy transfer from P3HT to PCBM. The expected charge separation due to hole transfer from PCBM to P3HT occurs in the 100 ps timescale. The derived picture is much different from the accepted view of ultra-fast electron transfer at the polymer/PCBM interface and provides new directions for the development of efficient devices.