Ajey Kumar Pathak
Indian Council of Agricultural Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajey Kumar Pathak.
BMC Genomics | 2013
Naresh Sahebrao Nagpure; Iliyas Rashid; Rameshwar Pati; Ajey Kumar Pathak; Mahender Singh; Shri Prakash Singh; Uttam Kumar Sarkar
BackgroundMicrosatellite DNA is one of many powerful genetic markers used for the construction of genetic linkage maps and the study of population genetics. The biological databases in public domain hold vast numbers of microsatellite sequences for many organisms including fishes. The microsatellite data available in these data sources were extracted and managed into a database that facilitates sequences analysis and browsing relevant information. The system also helps to design primer sequences for flanking regions of repeat loci for PCR identification of polymorphism within populations.DescriptionFishMicrosat is a database of microsatellite sequences of fishes and shellfishes that includes important aquaculture species such as Lates calcarifer, Ctenopharyngodon idella, Hypophthalmichthys molitrix, Penaeus monodon, Labeo rohita, Oreochromis niloticus, Fenneropenaeus indicus and Macrobrachium rosenbergii. The database contains 4398 microsatellite sequences of 41 species belonging to 15 families from the Indian subcontinent. GenBank of NCBI was used as a prime data source for developing the database. The database presents information about simple and compound microsatellites, their clusters and locus orientation within sequences. The database has been integrated with different tools in a web interface such as primer designing, locus finding, mapping repeats, detecting similarities among sequences across species, and searching using motifs and keywords. In addition, the database has the ability to browse information on the top 10 families and the top 10 species, through record overview.ConclusionsFishMicrosat database is a useful resource for fish and shellfish microsatellite analyses and locus identification across species, which has important applications in population genetics, evolutionary studies and genetic relatedness among species. The database can be expanded further to include the microsatellite data of fishes and shellfishes from other regions and available information on genome sequencing project of species of aquaculture importance.
Journal of Molecular Modeling | 2013
Arunima Kumar Verma; Shipra Gupta; Sharad Verma; Abha Mishra; Naresh Sahebrao Nagpure; Shivesh Pratap Singh; Ajey Kumar Pathak; Uttam Kumar Sarkar; Shri Prakash Singh; Mahender Singh; Prahlad Kishore Seth
White spot disease is a devastating disease of shrimp Penaeus monodon in which the shrimp receptor protein PmRab7 interacts with viral envelop protein VP28 to form PmRab7–VP28 complex, which causes initiation of the disease. The molecular mechanism implicated in the disease, the dynamic behavior of proteins as well as interaction between both the biological counterparts that crafts a micro-environment feasible for entry of virus into the shrimp is still unknown. In the present study, we applied molecular modeling (MM), molecular dynamics (MD) and docking to compute surface mapping of infective amino acid residues between interacting proteins. Our result showed that α-helix of PmRab7 (encompassing Ser74, Ile143, Thr184, Arg53, Asn144, Thr184, Arg53, Arg79) interacts with β-sheets of VP28 (containing Ser74, Ile143, Thr184, Arg53, Asn144, Thr184, Arg53, Arg79) and Arg69-Ser74, Val75-Ile143, Leu73-Ile143, Arg79-Asn144, Ala198-Ala182 bonds contributed in the formation of PmRab7–VP28 complex. Further studies on the amino acid residues and bonds may open new possibilities for preventing PmRab7–VP28 complex formation, thus reducing chances of WSD. The quantitative predictions provide a scope for experimental testing in future as well as endow with a straightforward evidence to comprehend cellular mechanisms underlying the disease.
Bioinformation | 2012
Naresh Sahebrao Nagpure; Iliyas Rashid; Ajey Kumar Pathak; Mahender Singh; Shri Prakash Singh; Uttam Kumar Sarkar
DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. Availability The database is available for free at http://mail.nbfgr.res.in/fbis/
PLOS ONE | 2015
Naresh Sahebrao Nagpure; Iliyas Rashid; Ajey Kumar Pathak; Mahender Singh; Rameshwar Pati; Shri Singh; Uttam Kumar Sarkar
Mitochondrial genome sequences have been widely used for evolutionary and phylogenetic studies. Among vertebrates, fish are an important, diverse group, and their mitogenome sequences are growing rapidly in public repositories. To facilitate mitochondrial genome analysis and to explore the valuable genetic information, we developed the Fish Mitogenome Resource (FMiR) database to provide a workbench for mitogenome annotation, species identification and microsatellite marker mining. The microsatellites are also known as simple sequence repeats (SSRs) and used as molecular markers in studies on population genetics, gene duplication and marker assisted selection. Here, easy-to-use tools have been implemented for mining SSRs and for designing primers to identify species/habitat specific markers. In addition, FMiR can analyze complete or partial mitochondrial genome sequence to identify species and to deduce relational distances among sequences across species. The database presently contains curated mitochondrial genomes from 1302 fish species belonging to 297 families and 47 orders reported from saltwater and freshwater ecosystems. In addition, the database covers information on fish species such as conservation status, ecosystem, family, distribution and occurrence downloaded from the FishBase and IUCN Red List databases. Those fish information have been used to browse mitogenome information for the species belonging to a particular category. The database is scalable in terms of content and inclusion of other analytical modules. The FMiR is running under Linux operating platform on high performance server accessible at URL http://mail.nbfgr.res.in/fmir.
Scientific Reports | 2017
Iliyas Rashid; Naresh Sahebrao Nagpure; Prachi Srivastava; Ravindra Kumar; Ajey Kumar Pathak; Mahender Singh; Basdeo Kushwaha
Several studies have highlighted the changes in the gene expression due to the hypoxia response in fishes, but the systematic organization of the information and the analytical platform for such genes are lacking. In the present study, an attempt was made to develop a database of hypoxia responsive genes in fishes (HRGFish), integrated with analytical tools, using LAMPP technology. Genes reported in hypoxia response for fishes were compiled through literature survey and the database presently covers 818 gene sequences and 35 gene types from 38 fishes. The upstream fragments (3,000 bp), covered in this database, enables to compute CG dinucleotides frequencies, motif finding of the hypoxia response element, identification of CpG island and mapping with the reference promoter of zebrafish. The database also includes functional annotation of genes and provides tools for analyzing sequences and designing primers for selected gene fragments. This may be the first database on the hypoxia response genes in fishes that provides a workbench to the scientific community involved in studying the evolution and ecological adaptation of the fish species in relation to hypoxia.
Database | 2016
Naresh Sahebrao Nagpure; Ajey Kumar Pathak; Rameshwar Pati; Iliyas Rashid; Jyoti Sharma; Shri Singh; Mahender Singh; Uttam Kumar Sarkar; Basdeo Kushwaha; Ravindra Kumar; Sathiya Murali
A voluminous information is available on karyological studies of fishes; however, limited efforts were made for compilation and curation of the available karyological data in a digital form. ‘Fish Karyome’ database was the preliminary attempt to compile and digitize the available karyological information on finfishes belonging to the Indian subcontinent. But the database had limitations since it covered data only on Indian finfishes with limited search options. Perceiving the feedbacks from the users and its utility in fish cytogenetic studies, the Fish Karyome database was upgraded by applying Linux, Apache, MySQL and PHP (pre hypertext processor) (LAMP) technologies. In the present version, the scope of the system was increased by compiling and curating the available chromosomal information over the globe on fishes and other aquatic organisms, such as echinoderms, molluscs and arthropods, especially of aquaculture importance. Thus, Fish Karyome version 2.1 presently covers 866 chromosomal records for 726 species supported with 253 published articles and the information is being updated regularly. The database provides information on chromosome number and morphology, sex chromosomes, chromosome banding, molecular cytogenetic markers, etc. supported by fish and karyotype images through interactive tools. It also enables the users to browse and view chromosomal information based on habitat, family, conservation status and chromosome number. The system also displays chromosome number in model organisms, protocol for chromosome preparation and allied techniques and glossary of cytogenetic terms. A data submission facility has also been provided through data submission panel. The database can serve as a unique and useful resource for cytogenetic characterization, sex determination, chromosomal mapping, cytotaxonomy, karyo-evolution and systematics of fishes. Database URL: http://mail.nbfgr.res.in/Fish_Karyome
Bioinformation | 2012
Naresh Sahebrao Nagpure; Iliyas Rashid; Ajey Kumar Pathak; Mahender Singh; Shri Prakash Singh; Uttam Kumar Sarkar
A total of 1671 ESTs of Labeo rohita were retrieved from dbEST database and analysed for functional annotation using various computational approaches. The result indicated 1387 non-redundant (184 contigs and 1203 singletons) putative transcripts with an average length of 542 bp. These 1387 transcript sequences were matched with Refseq_RNA, UniGene and Swiss-Prot on high threshold cut-off for functional annotation along with help of gene ontology and SSRs markers. We developed extensive Perl programming based modules for processing all alignment files, comparing and extracting common hits from all files on a threshold, evaluating statistics for alignment results and assigning gene ontology terms. In this study, 92 putative transcripts predicted as orthologous genes and among those, 44 putative transcripts were annotated with gene ontology terms. The annotated orthologous gene of our result associated with some very important proteins of L. rohita involved in biotic and abiotic stresses and glucose metabolism of spermatogenic cells etc. The unidentified transcripts, if found important in expression profiling can be vital resource after re-sequencing. The predicted genes can further be used for enhancing productivity and controlling disease of L. rohita.
Mitochondrial DNA | 2015
Naresh Sahebrao Nagpure; Iliyas Rashid; Ajey Kumar Pathak; Mahender Singh; Shri Prakash Singh; Uttam Kumar Sarkar
Abstract The availability of fish mitochondrial (mt) genomes provides an opportunity to explore the simple sequence repeats. In the present study, mt genomes of 85 fish species reported from Indian subcontinent were downloaded from NCBI and computationally analysed for finding SSRs types, frequency of occurrence, mutation and evolutionary adaptation across species. A total of 92 microsatellites in different nucleotide combinations were detected in 59 species. 26 interspersed SSRs, mostly poly (AT)n were found in the D-loop regions in the species of Cyprinidae. Fifty-six SSRs of 12 bp fixed length were observed in eight genes only. Further, identical repeat motifs were found on the same location in ATP6 and ND4 genes, which were biased towards particular habitat. The comparison of ATP6 and ND4 gene sets to other homologous sequences showed point mutations. This study explores the SSRs discovery and their utility as marker for species and population identification.
Bioinformation | 2012
Naresh Sahebrao Nagpure; Ajey Kumar Pathak; Rameshwar Pati; Shri Prakash Singh; Mahender Singh; Uttam Kumar Sarkar; Basdeo Kushwaha; Ravindra Kumar
‘Fish Karyome’, a database on karyological information of Indian fishes have been developed that serves as central source for karyotype data about Indian fishes compiled from the published literature. Fish Karyome has been intended to serve as a liaison tool for the researchers and contains karyological information about 171 out of 2438 finfish species reported in India and is publically available via World Wide Web. The database provides information on chromosome number, morphology, sex chromosomes, karyotype formula and cytogenetic markers etc. Additionally, it also provides the phenotypic information that includes species name, its classification, and locality of sample collection, common name, local name, sex, geographical distribution, and IUCN Red list status. Besides, fish and karyotype images, references for 171 finfish species have been included in the database. Fish Karyome has been developed using SQL Server 2008, a relational database management system, Microsofts ASP.NET-2008 and Macromedias FLASH Technology under Windows 7 operating environment. The system also enables users to input new information and images into the database, search and view the information and images of interest using various search options. Fish Karyome has wide range of applications in species characterization and identification, sex determination, chromosomal mapping, karyo-evolution and systematics of fishes.
Revista De Biologia Tropical | 2013
Uttam Kumar Sarkar; Ajey Kumar Pathak; Lalit Kumar Tyagi; Satyendra Mohan Srivastava; Shri Prakash Singh; Vineet Kumar Dubey