Ajinkya Sase
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajinkya Sase.
PLOS ONE | 2015
Rasha Refaat Mahmmoud; Sunetra Sase; Yogesh D. Aher; Ajinkya Sase; Marion Gröger; Maher Mokhtar; Harald Höger; Gert Lubec
Background Changes in synaptic structure and efficacy including dendritic spine number and morphology have been shown to underlie neuronal activity and size. Moreover, the shapes of individual dendritic spines were proposed to correlate with their capacity for structural change. Spine numbers and morphology were reported to parallel memory formation in the rat using a water maze but, so far, there is no information on spine counts or shape in the radial arm maze (RAM), a frequently used paradigm for the evaluation of complex memory formation in the rodent. Methods 24 male Sprague-Dawley rats were divided into three groups, 8 were trained, 8 remained untrained in the RAM and 8 rats served as cage controls. Dendritic spine numbers and individual spine forms were counted in CA1, CA3 areas and dentate gyrus of hippocampus using a DIL dye method with subsequent quantification by the Neuronstudio software and the image J program. Results Working memory errors (WME) and latency in the RAM were decreased along the training period indicating that animals performed the task. Total spine density was significantly increased following training in the RAM as compared to untrained rats and cage controls. The number of mushroom spines was significantly increased in the trained as compared to untrained and cage controls. Negative significant correlations between spine density and WME were observed in CA1 basal dendrites and in CA3 apical and basal dendrites. In addition, there was a significant negative correlation between spine density and latency in CA3 basal dendrites. Conclusion The study shows that spine numbers are significantly increased in the trained group, an observation that may suggest the use of this method representing a morphological parameter for memory formation studies in the RAM. Herein, correlations between WME and latency in the RAM and spine density revealed a link between spine numbers and performance in the RAM.
Journal of Neurochemistry | 2014
Sivaprakasam R. Saroja; Ajinkya Sase; Susanne Gerit Kircher; Jia Wan; Johannes Berger; Harald Höger; Arnold Pollak; Gert Lubec
Proteoglycans (PGs) are major constituents of the extracellular matrix and have recently been proposed to contribute to synaptic plasticity. Hippocampal PGs have not yet been studied or linked to memory. The aim of the study, therefore, was to isolate and characterize rat hippocampal PGs and determine their possible role in spatial memory. PGs were extracted from rat hippocampi by anion‐exchange chromatography and analyzed by nano LC‐MS/MS. Twenty male Sprague–Dawley rats were tested in the morris water maze. PGs agrin, amyloid beta A4 protein, brevican, glypican‐1, neurocan, phosphacan, syndecan‐4, and versican were identified in the hippocampi. Brevican and versican levels in the membrane fraction were higher in the trained group, correlating with the time spent in the target quadrant. α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor GluR1 was co‐precipitated with brevican and versican. Levels for a receptor complex containing GluR1 was higher in trained while GluR2 and GluR3‐containing complex levels were higher in yoked rats. The findings provide information about the PGs present in the rat hippocampus, demonstrating that versican and brevican are linked to memory retrieval in the morris water maze and that PGs interact with α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor GluR1, which is linked to memory retrieval.
Frontiers in Behavioral Neuroscience | 2015
Yasemin Karabacak; Sunetra Sase; Yogesh D. Aher; Ajinkya Sase; Sivaprakasam R. Saroja; Ana Cicvaric; Harald Höger; Michael L. Berger; Vasiliy A. Bakulev; Harald H. Sitte; Johann Leban; Francisco J. Monje; Gert Lubec
A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM) enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT) and norepinephrine (NET) by modafinil was tested. Sixty male Sprague–Dawley rats were divided into six groups (modafinil-treated 1–5–10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days) and tested in a radial arm maze (RAM), a paradigm for testing spatial WM. Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC) and complexes containing the D1–3 dopamine receptor subunits (D1–D3-CC) were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 11.11 μM; SERT 1547 μM; NET 182 μM). From day 8 (day 9 for 1 mg/kg body weight) modafinil was decreasing WM errors (WMEs) in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1–D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1–3-CC is proposed as a possible mechanism of action.
Behavioural Brain Research | 2013
Ajinkya Sase; Sudath Dahanayaka; Harald Höger; Guoyao Wu; Gert Lubec
Although a series of amino acids (AA) have been associated with spatial memory formation, there is limited information on concentrations of beta-alanine and citrulline in rodent brains. Given the importance of AA metabolism in cognitive functions it was the aim of the study to determine hippocampal levels of beta-alanine and citrulline in rats during two different phases of memory retrieval in a spatial memory paradigm. Ten rats were used per group and the first group was trained and sacrificed five min, the second six hours following retrieval in the Morris Water Maze (MWM) and the third and fourth group were untrained, yoked controls. Hippocampi were taken and free AA were determined using a well-established HPLC protocol. Beta-alanine and citrulline levels were higher in trained rat hippocampi, during both, early and late phase of memory retrieval. Taurine, methionine, cysteine, lysine and ornithine levels were higher in yoked rats at the late phase while tyrosine was higher in yoked rats during the early phase. There were no significant correlations between time spent in the target quadrant and any of the AA levels. Herein, an AA pattern, different between yoked and trained animals at early and late phase of memory retrieval is shown, indicating probable involvement of different AA pathways in animals trained and untrained in the MWM. The results may be useful for the interpretation of previous studies and the design of future experiments to identify amino acids as possible targets for modulating spatial memory.
Frontiers in Behavioral Neuroscience | 2016
Yogesh D. Aher; Saraswathi Subramaniyan; Bharanidharan Shanmugasundaram; Ajinkya Sase; Sivaprakasam R. Saroja; Marion Holy; Harald Höger; Tetyana Beryozkina; Harald H. Sitte; Johann Leban; Gert Lubec
Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM.
Behavioural Brain Research | 2015
Bharanidharan Shanmugasundaram; Ajinkya Sase; András G. Miklósi; Fernando J. Sialana; Saraswathi Subramaniyan; Yogesh D. Aher; Marion Gröger; Harald Höger; Keiryn L. Bennett; Gert Lubec
Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies.
Hippocampus | 2013
Lin Li; Ajinkya Sase; Sudarshan S. Patil; Berta Sunyer; Harald Höger; Karl-Heinz Smalla; Oliver Stork; Gert Lubec
Protein phosphorylation and dephosphorylation events play a key role in memory formation and various protein kinases and phosphatases have been firmly associated with memory performance. Here, we determined expression changes of protein kinases and phosphatases following retrieval of spatial memory in CD1 mice in a Morris Water Maze task, using antibody microarrays and confirmatory Western blot. Comparing changes following single and consecutive retrieval, we identified stably and differentially expressed kinases, some of which have never been implicated before in memory functions. On the basis of these findings we define a small signaling network associated with spatial memory retrieval. Moreover, we describe differential regulation and correlation of expression levels with behavioral performance of polo‐like kinase 1. Together with its recently observed genetic association to autism‐spectrum disorders our data suggest a role of this kinase in balancing preservation and flexibility of learned behavior.
Amino Acids | 2017
Birgit Rössner; Maximilian Klingler; Tanja Bulat; Ajinkya Sase; Andrea Zeilinger; Jana Aradska; Margit Cichna-Markl; Gert Lubec
AMPA receptors mediate most fast excitatory synaptic transmission in the brain. Highly dynamic AMPA receptors are subjected to trafficking, recycling, and/or degradation and replacement. Changes in AMPA receptor abundance is an important mechanism involved in learning and memory formation. Results obtained with the Morris water maze (MWM), a paradigm for testing spatial memory in rodent, correlate with hippocampal synaptic plasticity and NMDA function. Different phases of spatial learning like acquisition and retrieval involve AMPA receptors. Long-term memory formation requires dynamic changes in gene transcription and protein synthesis. It is, however, not known so far if epigenetic marks such as DNA methylation and mRNA levels participate in regulation of AMPA receptors in hippocampus during memory retrieval. In the present study, rats were trained or untrained in the MWM. Steady state levels of hippocampal GluA1–4 mRNA were determined by RT-PCR and promoter methylation levels of GluA1–4 by in-house developed bisulfite pyrosequencing methods. GluA1–4 protein levels were determined in parallel in a membrane fraction by SDS-PAGE followed by Western blotting. Our results indicate that changes of hippocampal membrane AMPA receptors were modulated at the protein level, while no changes were observed at the mRNA and at the promoter methylation level of hippocampal GluA1–4. Training in the MWM at retrieval may, therefore, involve GluA2 and GluA4 subunits that may be regulated by protein stability or trafficking as protein determinations were carried out in a hippocampal membrane fraction.
Hippocampus | 2015
Sunetra Sase; Ajinkya Sase; Fernando J. Sialana; Marion Gröger; Keiryn L. Bennett; Oliver Stork; Gert Lubec; Lin Li
In contextual fear conditioning (CFC), the use of pharmacological and lesion approaches has helped to understand that there are differential roles for the dorsal hippocampus (DH) and the ventral hippocampus (VH) in the acquisition, consolidation and retrieval phases. Concomitant analysis of the DH and the VH in individual phases with respect to α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionate receptors and N‐methyl‐d‐aspartate receptor subtype N1 (GluN1) ‐containing complexes (RCC) and subunits has not been reported so far. Herein, CFC was performed in mice that were euthanized at different time points. DH and VH samples were taken for the determination of RCC and subunit levels using BN‐ and SDS‐PAGE, respectively, with subsequent Western blotting. Evaluation of spine densities, morphology, and immunohistochemistry of GluA1 and GluA2 was performed. In the acquisition phase levels of GluA1‐RCC and subunits in VH were increased. In the consolidation phase GluA1‐ and GluA2‐RCC levels were increased in DH and VH, while both receptor subunit levels were increased in the VH only. In the retrieval phase GluA1‐RCC, subunits thereof and GluA2‐RCC were increased in DH and VH, whereas GluA2 subunits were increased in the VH only. GluN1‐RCC levels were increased in acquisition and consolidation phase, while subunit levels in the acquisition phase were increased only in the DH. The immunohistochemical studies in the individual phases in subareas of hippocampus supported immunochemical changes of GluA1 and GluA2 RCCs. Dendritic spine densities and the prevalence of thin spines in the acquisition phase of VH and mushroom spines in the retrieval phase of the VH and DH were increased. The findings from the current study suggest different receptor and receptor complex patterns in the individual phases in CFC and in DH and VH. The results propose that different RCCs are formed in the individual phases and that VH and DH may be involved in CFC.
Behavioural Brain Research | 2013
Ajinkya Sase; Hans Brückner; Harald Höger; Arnold Pollak; Gert Lubec
Although a series of amino acid analogs have been shown to modulate brain function, information on the pharmacology of alpha-alkylated amino acids (AAAA) is limited. In particular there is no information on the effect of these amino acid analogs (AAA) on the elevated plus maze, the tail suspension test and the forced swim test. It was therefore the aim of the study to test a series of AAAA in these paradigms in order to explore behavioral activities of this compound class. 10 male mice per group aged between 10 and 14 weeks were used. Vehicle-treated controls were used in addition to intraperitoneal injections of 1, 10 and 100mg/kg body weight of each, alpha-amino-isobutyic acid (AIB), isovaline (IVA), alpha-propyl-alanine (APA), alpha-butyl-alanine (ABA), alpha-pentyl-alanine (APnA), alpha-ethylphenylglycine (AEPG) and alpha-methyl-valine (AMV). The elevated plus maze (EPM), the tail suspension test (TST) and forced swim test (FST) were used for behavioral testing. There were dose-dependent results: all compounds increased time and pathlength in the open arm of the EPM at least at one dose administered. In the TST and in the FST only the 100mg dose was showing an effect. The results show pharmacological activity modifying the EPM in low doses suggesting the use in treatment of behavioral traits and symptoms represented by or linked to the EPM including anxiety-related behavior including depression. Compounds acting at higher doses may be used to induce behavioral changes and thus serve as neurobiological-neuropharmacological tools.