Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajit K. Basak is active.

Publication


Featured researches published by Ajit K. Basak.


Nature Structural & Molecular Biology | 1998

Structure of the key toxin in gas gangrene

Claire E. Naylor; Julian Eaton; Angela M. Howells; Neil Justin; David S. Moss; Richard W. Titball; Ajit K. Basak

Clostridium perfringens α-toxin is the key virulence determinant in gas gangrene and has also been implicated in the pathogenesis of sudden death syndrome in young animals. The toxin is a 370-residue, zinc metalloenzyme that has phospholipase C activity, and can bind to membranes in the presence of calcium. The crystal structure of the enzyme reveals a two-domain protein. The N-terminal domain shows an anticipated structural similarity to Bacillus cereus phosphatidylcholine-specific phospholipase C (PC-PLC). The C-terminal domain shows a strong structural analogy to eukaryotic calcium-binding C2 domains. We believe this is the first example of such a domain in prokaryotes. This type of domain has been found to act as a phospholipid and/or calcium-binding domain in intracellular second messenger proteins and, interestingly, these pathways are perturbed in cells treated with α-toxin. Finally, a possible mechanism for α-toxin attack on membrane-packed phospholipid is described, which rationalizes its toxicity when compared to other, non-haemolytic, but homologous phospholipases C.


Nature Structural & Molecular Biology | 2004

Clostridium Perfringens Epsilon-Toxin Shows Structural Similarity to the Pore-Forming Toxin Aerolysin

Ambrose R. Cole; Michel Popoff; David S. Moss; Richard W. Titball; Ajit K. Basak

ε-Toxin from Clostridium perfringens is a lethal toxin. Recent studies suggest that the toxin acts via an unusually potent pore-forming mechanism. Here we report the crystal structure of ε-toxin, which reveals structural similarity to aerolysin from Aeromonas hydrophila. Pore-forming toxins can change conformation between soluble and transmembrane states. By comparing the two toxins, we have identified regions important for this transformation.


Journal of Molecular Biology | 2003

High-resolution X-ray Crystal Structures of Human γD Crystallin (1.25 Å) and the R58H Mutant (1.15 Å) Associated with Aculeiform Cataract

Ajit K. Basak; Orval A. Bateman; Christine Slingsby; Ajay Pande; Neer Asherie; Olutayo Ogun; George B. Benedek; Jayanti Pande

Several human cataracts have been linked to mutations in the gamma crystallin gene. One of these is the aculeiform cataract, which is caused by an R58H mutation in gammaD crystallin. We have shown previously that this cataract is caused by crystallization of the mutant protein, which is an order of magnitude less soluble than the wild-type. Here, we report the very high-resolution crystal structures of the mutant and wild-type proteins. Both proteins crystallize in the same space group and lattice. Thus, a strict comparison of the protein-protein and protein-water intermolecular interactions in the two crystal lattices is possible. Overall, the differences between the mutant and wild-type structures are small. At position 58, the mutant protein loses the direct ion-pair intermolecular interaction present in the wild-type, due to the differences between histidine and arginine at the atomic level; the interaction in the mutant is mediated by water molecules. Away from the mutation site, the mutant and wild-type lattice structures differ in the identity of side-chains that occupy alternate conformations. Since the interactions in the crystal phase are very similar for the two proteins, we conclude that the reduction in the solubility of the mutant is mainly due to the effect of the R58H mutation in the solution phase. The results presented here are also important as they are the first high-resolution X-ray structures of human gamma crystallins.


FEBS Journal | 2011

Molecular basis of toxicity of Clostridium perfringens epsilon toxin

Monika Bokori-Brown; Christos G. Savva; Sérgio P. Fernandes da Costa; Claire E. Naylor; Ajit K. Basak; Richard W. Titball

Clostridium perfringensε‐toxin is produced by toxinotypes B and D strains. The toxin is the aetiological agent of dysentery in newborn lambs but is also associated with enteritis and enterotoxaemia in goats, calves and foals. It is considered to be a potential biowarfare or bioterrorism agent by the US Government Centers for Disease Control and Prevention. The relatively inactive 32.9 kDa prototoxin is converted to active mature toxin by proteolytic cleavage, either by digestive proteases of the host, such as trypsin and chymotrypsin, or by C. perfringensλ‐protease. In vivo, the toxin appears to target the brain and kidneys, but relatively few cell lines are susceptible to the toxin, and most work has been carried out using Madin–Darby canine kidney (MDCK) cells. The binding of ε‐toxin to MDCK cells and rat synaptosomal membranes is associated with the formation of a stable, high molecular weight complex. The crystal structure of ε‐toxin reveals similarity to aerolysin from Aeromonas hydrophila, parasporin‐2 from Bacillus thuringiensis and a lectin from Laetiporus sulphureus. Like these toxins, ε‐toxin appears to form heptameric pores in target cell membranes. The exquisite specificity of the toxin for specific cell types suggests that it binds to a receptor found only on these cells.


Journal of Molecular Biology | 2011

Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins.

David C. Briggs; Claire E. Naylor; James G. Smedley; Natalya Lukoyanova; Susan L. Robertson; David S. Moss; Bruce A. McClane; Ajit K. Basak

Clostridium perfringens enterotoxin (CPE) is a major cause of food poisoning and antibiotic-associated diarrhea. Upon its release from C. perfringens spores, CPE binds to its receptor, claudin, at the tight junctions between the epithelial cells of the gut wall and subsequently forms pores in the cell membranes. A number of different complexes between CPE and claudin have been observed, and the process of pore formation has not been fully elucidated. We have determined the three-dimensional structure of the soluble form of CPE in two crystal forms by X-ray crystallography, to a resolution of 2.7 and 4.0 Å, respectively, and found that the N-terminal domain shows structural homology with the aerolysin-like β-pore-forming family of proteins. We show that CPE forms a trimer in both crystal forms and that this trimer is likely to be biologically relevant but is not the active pore form. We use these data to discuss models of pore formation.


Journal of Biological Chemistry | 2013

Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens

Christos G. Savva; P. Fernandes da Costa; Monika Bokori-Brown; Claire E. Naylor; Ambrose R. Cole; David S. Moss; Richard W. Titball; Ajit K. Basak

Background: Clostridium perfringens toxin NetB is a key factor in avian necrotic enteritis. Results: NetB forms heptameric pores structurally similar to Staphylococcus aureus toxins but lacks a phosphocholine binding pocket. NetB activity is enhanced by cholesterol. Conclusion: NetB has distinct binding specificity, and cholesterol may act as a receptor. Significance: The structure of NetB will facilitate development of control measures against necrotic enteritis. NetB is a pore-forming toxin produced by Clostridium perfringens and has been reported to play a major role in the pathogenesis of avian necrotic enteritis, a disease that has emerged due to the removal of antibiotics in animal feedstuffs. Here we present the crystal structure of the pore form of NetB solved to 3.9 Å. The heptameric assembly shares structural homology to the staphylococcal α-hemolysin. However, the rim domain, a region that is thought to interact with the target cell membrane, shows sequence and structural divergence leading to the alteration of a phosphocholine binding pocket found in the staphylococcal toxins. Consistent with the structure we show that NetB does not bind phosphocholine efficiently but instead interacts directly with cholesterol leading to enhanced oligomerization and pore formation. Finally we have identified conserved and non-conserved amino acid positions within the rim loops that significantly affect binding and toxicity of NetB. These findings present new insights into the mode of action of these pore-forming toxins, enabling the design of more effective control measures against necrotic enteritis and providing potential new tools to the field of bionanotechnology.


Nature Communications | 2016

Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

Monika Bokori-Brown; Thomas G. Martin; Claire E. Naylor; Ajit K. Basak; Richard W. Titball; Christos G. Savva

Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel.


Vaccine | 2013

Protection against avian necrotic enteritis after immunisation with NetB genetic or formaldehyde toxoids

Sérgio P. Fernandes da Costa; Dorien Mot; Monika Bokori-Brown; Christos G. Savva; Ajit K. Basak; Filip Van Immerseel; Richard W. Titball

Highlights • NetB from Clostridium perfringens is the major virulence factor in avian necrotic enteritis.• Vaccination with a NetB genetic or formaldehyde toxoid protects chicken in an in vivo disease model.• NetB toxoids could form the bases of an efficient vaccine against necrotic enteritis.


International Journal of Medical Microbiology | 2000

Opening of the active site of Clostridium perfringens α-toxin may be triggered by membrane binding

Richard W. Titball; Claire E. Naylor; Julie Miller; David S. Moss; Ajit K. Basak

On the basis of amino acid sequence homologies with other phospholipases C, the alpha-toxin of Clostridium perfringens was predicted to be a two-domain protein. Using truncated forms of alpha-toxin the phospholipase C active site was shown to be located in the amino-terminal domain. Crystallographic studies have confirmed this organisation and have also revealed that the carboxy-terminal domain is structurally similar to the phospholipid-binding domains in eukaryotic proteins. This information has been used to devise a model predicting how alpha-toxin interacts with membranes via calcium-mediated recognition of phospholipid head groups and the interaction of hydrophobic amino acids with the phospholipid tail group. The binding of alpha-toxin to membranes appears to result in the opening of the active site allowing hydrolysis of membrane phospholipids.


Protein Science | 2013

Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies.

Monika Bokori-Brown; Maria C. Kokkinidou; Christos G. Savva; Sérgio P. Fernandes da Costa; Claire E. Naylor; Ambrose R. Cole; David S. Moss; Ajit K. Basak; Richard W. Titball

Clostridium perfringens epsilon toxin (Etx) is a pore‐forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx‐H149A), previously reported to have reduced, but not abolished, toxicity. The three‐dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx‐H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx‐H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx‐H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx‐H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx‐H149A identified a glycan (β‐octyl‐glucoside) binding site in domain III of Etx‐H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.

Collaboration


Dive into the Ajit K. Basak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge