Ajit Kumar Sharma
Indian Institute of Technology Kanpur
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajit Kumar Sharma.
Journal of Hazardous Materials | 2009
Vijay P. Singh; Ajit Kumar Sharma; Devendra Narayan Tripathi; Rashmi Sanghi
Present study reports on peroxydisulfate/ascorbic acid initiated synthesis of Chitosan-graft-poly(methylmethacrylate) (Ch-g-PMMA) and its characterization by FTIR, XRD and (13)C NMR. The copolymer remained water insoluble even under highly acidic conditions and was evaluated to be an efficient adsorbent for the three anionic azo dyes (Procion Yellow MX, Remazol Brilliant Violet and Reactive Blue H5G) over a wide pH range of 4-10 being most at pH 7. The adsorbent was also found efficient in decolorizing the textile industry wastewater and was much more efficient than the parent chitosan. Equilibrium sorption experiments were carried out at different pH and initial dye concentration values. The experimental equilibrium data for each adsorbent-dye system were successfully fitted to the Langmuir and Freundlich sorption isotherms. Based on Langmuir model Q(max) for yellow, violet and blue dyes was 250, 357 and 178, respectively. Thermodynamic parameters of the adsorption processes such as DeltaG degrees , DeltaH degrees , and DeltaS degrees were calculated. The negative values of free energy reflected the spontaneous nature of adsorption. The adsorption kinetic data of all the three dyes could be well represented by pseudo-second-order model with the correlation coefficients (R(2)) being 0.9922, 0.9997 and 0.9862, for direct yellow, reactive violet and blue dye, respectively with rate constants 0.91 x 10(-4), 1.82 x 10(-4) and 1.05 x 10(-4) g mg(-1)min(-1), respectively. At pH 7, parent chitosan also showed pseudo-second-order kinetics. The temperature dependence of dye uptake and the pseudo-second-order kinetics of the adsorption indicated that chemisorption is the rate-limiting step that controls the process.
Journal of Hazardous Materials | 2009
Vandana Singh; Ajit Kumar Sharma; Rashmi Sanghi
In the present communication we report on the optimization of persulfate/ascorbic acid initiated synthesis of chitosan-graft-poly(acrylamide) (Ch-g-PAM) and its application in the removal of azo dyes. The optimum yield of the copolymer was obtained using 16 x 10(-2)M acrylamide, 3.0 x 10(-2)M ascorbic acid, 2.4 x 10(-3)M K(2)S(2)O(8) and 0.1g chitosan in 25 mL of 5% aqueous formic acid at 45+/-0.2 degrees C. Ch-g-PAM remained water insoluble even under highly acidic conditions and could efficiently remove Remazol violet and Procion yellow dyes from the aqueous solutions over a pH range of 3-8 in contrast to chitosan (Ch) which showed pH dependent adsorption. The adsorption data of the Ch-g-PAM and Ch for both the dyes were modeled by Langmuir and Freundlich isotherms where the data fitted better to Langmuir isotherms. To understand the adsorption behavior of Ch-g-PAM, adsorption of Remazol violet on to the copolymer was optimized and the kinetic and thermodynamic studies were carried out taking Ch as reference. Both Ch-g-PAM and Ch followed pseudo-second-order adsorption kinetics. The thermodynamic study revealed a positive heat of adsorption (Delta H degrees), a positive DeltaS degrees and a negative Delta G degrees, indicating spontaneous and endothermic nature of the adsorption of RV dye on to the Ch-g-PAM. The Ch-g-PAM was found to be very efficient in removing color from real industrial wastewater as well, though the interfering ions present in the wastewater slightly hindered its adsorption capacity. The data from regeneration efficiencies for ten cycles evidenced the high reusability of the copolymer in the treatment of waste water laden with even high concentrations of dye.
Materials Science and Engineering: C | 2013
Ajit Kumar Sharma; Prateek Khare; Jayant K. Singh; Nishith Verma
A novel nanocomposite polyvinyl alcohol precursor-based material dispersed with the web of carbon microfibers and carbon nanofibers is developed as lithium (Li)-ion electrolyte battery separator. The primary synthesis steps of the separator material consist of esterification of polyvinyl acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro-nanofibers, mixing of the milled micron size (~500 nm) fibers to the reactant mixture at the incipience of the polyvinyl alcohol gel formation, and the mixing of hydrophobic reagents along with polyethylene glycol as a plasticizer, to produce a thin film of ~25 μm. The produced film, uniformly dispersed with carbon micro-nanofibers, has dramatically improved performance as a battery separator, with the ion conductivity of the electrolytes (LiPF6) saturated film measured as 0.119 S-cm(-1), approximately two orders of magnitude higher than that of polyvinyl alcohol. The other primary characteristics of the produced film, such as tensile strength, contact angle, and thermal stability, are also found to be superior to the materials made of other precursors, including polypropylene and polyethylene, discussed in the literature. The method of producing the films in this study is novel, simple, environmentally benign, and economically viable.
Environment International | 2005
Nalini Sankararamakrishnan; Ajit Kumar Sharma; Rashmi Sanghi
Journal of Hazardous Materials | 2007
Nalini Sankararamakrishnan; Ajit Kumar Sharma; Rashmi Sanghi
Journal of Colloid and Interface Science | 2007
Vandana Singh; Stuti Tiwari; Ajit Kumar Sharma; Rashmi Sanghi
Chemical Engineering Science | 2010
Ajit Kumar Sharma; Nishith Verma; Ashutosh Sharma; Dinesh Deva; Nalini Sankararamakrishnan
Industrial & Engineering Chemistry Research | 2009
Vandana Singh; Ajit Kumar Sharma; Sadhana Maurya
Industrial & Engineering Chemistry Research | 2008
Vandana Singh; Ajit Kumar Sharma; Premlata Kumari; Stuti Tiwari
Polymers for Advanced Technologies | 2007
Vandana Singh; Premlata Kumari; Ashutosh Tiwari; Ajit Kumar Sharma