Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajit Zambre is active.

Publication


Featured researches published by Ajit Zambre.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity.

Nripen Chanda; Vijaya Kattumuri; Ravi Shukla; Ajit Zambre; Kavita K. Katti; Anandhi Upendran; Rajesh R. Kulkarni; Para Kan; Genevieve M. Fent; Stan W. Casteel; C. Jeffrey Smith; Evan Boote; J. David Robertson; Cathy S. Cutler; John R. Lever; Kattesh V. Katti; Raghuraman Kannan

Development of cancer receptor-specific gold nanoparticles will allow efficient targeting/optimum retention of engineered gold nanoparticles within tumors and thus provide synergistic advantages in oncology as it relates to molecular imaging and therapy. Bombesin (BBN) peptides have demonstrated high affinity toward gastrin-releasing peptide (GRP) receptors in vivo that are overexpressed in prostate, breast, and small-cell lung carcinoma. We have synthesized a library of GRP receptor-avid nanoplatforms by conjugating gold nanoparticles (AuNPs) with BBN peptides. Cellular interactions and binding affinities (IC50) of AuNP–BBN conjugates toward GRP receptors on human prostate cancer cells have been investigated in detail. In vivo studies using AuNP–BBN and its radiolabeled surrogate 198AuNP–BBN, exhibiting high binding affinity (IC50 in microgram ranges), provide unequivocal evidence that AuNP–BBN constructs are GRP-receptor-specific showing accumulation with high selectivity in GRP-receptor-rich pancreatic acne in normal mice and also in tumors in prostate-tumor-bearing, severe combined immunodeficient mice. The i.p. mode of delivery has been found to be efficient as AuNP–BBN conjugates showed reduced RES organ uptake with concomitant increase in uptake at tumor targets. The selective uptake of this new generation of GRP-receptor-specific AuNP–BBN peptide analogs has demonstrated realistic clinical potential in molecular imaging via x-ray computed tomography techniques as the contrast numbers in prostate tumor sites are severalfold higher as compared to the pretreatment group (Hounsfield unit = 150).


Proceedings of the National Academy of Sciences of the United States of America | 2012

Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer

Ravi Shukla; Nripen Chanda; Ajit Zambre; Anandhi Upendran; Kavita K. Katti; Rajesh R. Kulkarni; Satish Kumar Nune; Stan W. Casteel; Charles J. Smith; Jatin Vimal; Evan Boote; J. David Robertson; Para Kan; Hendrik Engelbrecht; Lisa D. Watkinson; Terry L. Carmack; John R. Lever; Cathy S. Cutler; Charles W. Caldwell; Raghuraman Kannan; Kattesh V. Katti

Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechin-gallate (EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), would circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein support our hypothesis. We report the development of inherently therapeutic gold nanoparticles derived from the Au-198 isotope; the range of the 198Au β-particle (approximately 11 mm in tissue or approximately 1100 cell diameters) is sufficiently long to provide cross-fire effects of a radiation dose delivered to cells within the prostate gland and short enough to minimize the radiation dose to critical tissues near the periphery of the capsule. The formulation of biocompatible 198AuNPs utilizes the redox chemistry of prostate tumor specific phytochemical EGCg as it converts gold salt into gold nanoparticles and also selectively binds with excellent affinity to Laminin67R receptors, which are over expressed in prostate tumor cells. Pharmacokinetic studies in PC-3 xenograft SCID mice showed approximately 72% retention of 198AuNP-EGCg in tumors 24 h after intratumoral administration. Therapeutic studies showed 80% reduction of tumor volumes after 28 d demonstrating significant inhibition of tumor growth compared to controls. This innovative nanotechnological approach serves as a basis for designing biocompatible target specific antineoplastic agents. This novel intratumorally injectable 198AuNP-EGCg nanotherapeutic agent may provide significant advances in oncology for use as an effective treatment for prostate and other solid tumors.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor–bearing mice

Nripen Chanda; Para Kan; Lisa D. Watkinson; Ravi Shukla; Ajit Zambre; Terry L. Carmack; Hendrik Engelbrecht; John R. Lever; Kavita K. Katti; Genevieve M. Fent; Stan W. Casteel; C. Jeffrey Smith; William H. Miller; Silvia S. Jurisson; Evan Boote; J. David Robertson; Cathy S. Cutler; Marina A. Dobrovolskaia; Raghuraman Kannan; Kattesh V. Katti

UNLABELLED Biocompatibility studies and cancer therapeutic applications of nanoparticulate beta-emitting gold-198 (198Au; beta(max) = 0.96 MeV; half-life of 2.7 days) are described. Gum arabic glycoprotein (GA)-functionalized gold nanoparticles (AuNPs) possess optimum sizes (12-18 nm core diameter and 85 nm hydrodynamic diameter) to target individual tumor cells and penetrate through tumor vasculature and pores. We report the results of detailed in vivo therapeutic investigations demonstrating the high tumor affinity of GA-198AuNPs in severely compromised immunodeficient (SCID) mice bearing human prostate tumor xenografts. Intratumoral administration of a single dose of beta-emitting GA-198AuNPs (70 Gy) resulted in clinically significant tumor regression and effective control in the growth of prostate tumors over 30 days. Three weeks after administration of GA-198AuNPs, tumor volumes for the treated animals were 82% smaller as compared with tumor volume of control group. The treatment group showed only transitory weight loss in sharp contrast to the tumor-bearing control group, which underwent substantial weight loss. Pharmacokinetic studies have provided unequivocal evidence for the optimum retention of therapeutic payload of GA-198AuNPs within the tumor site throughout the treatment regimen with minimal or no leakage of radioactivity to various nontarget organs. The measurements of white and red blood cells, platelets, and lymphocytes within the treatment group resembled those of the normal SCID mice, thus providing further evidence on the therapeutic efficacy and concomitant in vivo tolerance and nontoxic features of GA-198AuNPs. FROM THE CLINICAL EDITOR In this study, the biocompatibility and cancer therapeutic applications of glycoprotein (GA) functionalized gold nanoparticles containing b-emitting Au-198 are described in SCID mice bearing human prostate tumor xenografts. The findings of significant therapeutic efficacy, good in vivo tolerance and non-toxic features make these particles ideal candidates for future human applications.


Pharmaceutical Research | 2011

An Effective Strategy for the Synthesis of Biocompatible Gold Nanoparticles Using Cinnamon Phytochemicals for Phantom CT Imaging and Photoacoustic Detection of Cancerous Cells

Nripen Chanda; Ravi Shukla; Ajit Zambre; Swapna Mekapothula; Rajesh R. Kulkarni; Kavita K. Katti; Kiran Bhattacharyya; Genevieve M. Fent; Stan W. Casteel; Evan Boote; John A. Viator; Anandhi Upendran; Raghuraman Kannan; Kattesh V. Katti

ABSTRACTPurposeThe purpose of the present study was to explore the utilization of cinnamon-coated gold nanoparticles (Cin-AuNPs) as CT/optical contrast-enhancement agents for detection of cancer cells.MethodsCin-AuNPs were synthesized by a “green” procedure, and the detailed characterization was performed by physico-chemical analysis. Cytotoxicity and cellular uptake studies were carried out in normal human fibroblast and cancerous (PC-3 and MCF-7) cells, respectively. The efficacy of detecting cancerous cells was monitored using a photoacoustic technique. In vivo biodistribution was studied after IV injection of Cin-AuNPs in mice, and also a CT phantom model was generated.ResultsBiocompatible Cin-AuNPs were synthesized with high purity. Significant uptake of these gold nanoparticles was observed in PC-3 and MCF-7 cells. Cin-AuNPs internalized in cancerous cells facilitated detectable photoacoustic signals. In vivo biodistribution in normal mice showed steady accumulation of gold nanoparticles in lungs and rapid clearance from blood. Quantitative analysis of CT values in phantom model revealed that the cinnamon-phytochemical-coated AuNPs have reasonable attenuation efficiency.ConclusionsThe results indicate that these non-toxic Cin-AuNPs can serve as excellent CT/ photoacoustic contrast-enhancement agents and may provide a novel approach toward tumor detection through nanopharmaceuticals.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2012

Functionalized radioactive gold nanoparticles in tumor therapy

Raghuraman Kannan; Ajit Zambre; Nripen Chanda; Rajesh R. Kulkarni; Ravi Shukla; Kavita K. Katti; Anandhi Upendran; Cathy S. Cutler; Evan Boote; Kattesh V. Katti

The development of new treatment modalities that offer clinicians the ability to reduce sizes of tumor prior to surgical resection or to achieve complete ablation without surgery would be a significant medical breakthrough in the overall care and treatment of prostate cancer patients. The goal of our investigation is aimed at validating the hypothesis that Gum Arabic-functionalized radioactive gold nanoparticles (GA-(198) AuNP) have high affinity toward tumor vasculature. We hypothesized further that intratumoral delivery of the GA-(198) AuNP agent within prostate tumor will allow optimal therapeutic payload that will significantly or completely ablate tumor without side effects, in patients with hormone refractory prostate cancer. In order to evaluate the therapeutic efficacy of this new nanoceutical, GA-(198) AuNP was produced by stabilization of radioactive gold nanoparticles ((198) Au) with the FDA-approved glycoprotein, GA. This review will describe basic and clinical translation studies toward realization of the therapeutic potential and myriad of clinical applications of GA-(198) AuNP agent in treating prostate and various solid tumors in human cancer patients.


Bioconjugate Chemistry | 2014

Bombesin Peptide Conjugated Gold Nanocages Internalize via Clathrin Mediated Endocytosis

Dhananjay Suresh; Ajit Zambre; Nripen Chanda; Timothy J. Hoffman; C. Jeffrey Smith; J. David Robertson; Raghuraman Kannan

The nature of interaction and mechanism of internalization of receptor-avid peptide nanoparticles with cells is not yet completely understood. This article describes the cellular internalization mechanism and intracellular trafficking of peptide conjugated receptor targeted porous Gold nanocages (AuNCs) in cancer cells. We synthesized and characterized a library of AuNCs conjugated with bombesin (BBN) peptide. Evidence of selective affinity of AuNC-BBN toward gastrin releasing peptide receptors (GRPR) was obtained using radiolabeled competitive cell binding assay. Endocytic mechanism was investigated using cell inhibitor studies and monitored using optical and transmission electron microscopy (TEM). Results show AuNC-BBN uptake in PC3 cells is mediated by clathrin mediated endocytosis (CME). Indeed, in the presence of CME inhibitors, AuNC-BBN uptake in cells is reduced up to 84%. TEM images further confirm CME characteristic clathrin coated pits and lysosomal release of AuNCs. These results demonstrate that peptide ligands conjugated to the surface of nanoparticles maintain their target specificity. This bolsters the case for peptide robustness and its persisting functionality in intracellular vehicular delivery systems.


Bioorganic & Medicinal Chemistry Letters | 2014

Novel Di-Tertiary-Butyl Phenylhydrazones as Dual Cyclooxygenase-2/5- Lipoxygenase Inhibitors: Synthesis, COX/LOX Inhibition, Molecular Modeling, and Insights into Their Cytotoxicities

Shibnath Ghatak; Alok Vyas; Suniti Misra; Paul O’Brien; Ajit Zambre; Victor M. Fresco; Roger R. Markwald; K. Venkateshwara Swamy; Zahra Afrasiabi; Amitava Choudhury; Madhukar Khetmalas; Subhash Padhye

Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX-LOX inhibitors in colon cancer cells.


Recent results in cancer research | 2013

Nanoparticles and Phage Display Selected Peptides for Imaging and Therapy of Cancer

Cathy S. Cutler; Nripen Chanda; Ravi Shukla; Nebiat Sisay; Melchor Cantorias; Ajit Zambre; Mark F McLaughlin; James Kelsey; Anandhi Upenandran; Dave Robertson; Susan L. Deutscher; Raghuraman Kannan; Kattesh V. Katti

Molecular imaging probes are a special class of pharmaceuticals that target specific biochemical signatures associated with disease and allow for noninvasive imaging on the molecular level. Because changes in biochemistry occur before diseases reach an advanced stage, molecular imaging probes make it possible to locate and stage disease, track the effectiveness of drugs, treat disease, monitor response, and select patients to allow for more personalized diagnosis and treatment of disease. Targeting agents radiolabeled with positron emitters are of interest due to their ability to quantitatively measure biodistribution and receptor expression to allow for optimal dose determinations. (68)Ga is a positron emitter, which allows for quantitative imaging through positron emission chromatography (PET). The availability of (68)Ga from a generator and its ability to form stable complexes with a variety of chelates hold promise for expanding PET utilization to facilities unable to afford their own cyclotron. Nanoparticles conjugated with various proteins and peptides derived from phage display that can be selectively targeted are being developed and evaluated for guided imaging and therapy. Herein we highlight some initial efforts in combining the enhanced selectivity of nanoparticles and peptides with (68)Ga for use as molecular imaging probes.


International Journal of Green Nanotechnology | 2013

Green Nanotechnology from Brassicaceae Development of Broccoli Phytochemicals–Encapsulated Gold Nanoparticles and Their Applications in Nanomedicine

Menka Khoobchandani; Ajit Zambre; Kavita K. Katti; Chung-Ho Lin; Kattesh V. Katti

The interaction of cocktail of phytochemicals from broccoli with gold salt results in dual reduction and surface capping to produce well-defined stable and biocompatible gold nanoparticles (B-AuNPs). Broccoli phytochemicals–coated gold nanoparticles (B-AuNPs) have been fully characterized. Detailed in vitro stability in various biological fluids and affinity and selectivity for tumor cells have been investigated. The B-AuNPs showed significant in vitro cytotoxic effects against various cancer cells (MDA-MB-231, PC-3, U266, SkBr3, and T47D) as confirmed by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and flow cytometry apoptosis assays. Surface encapsulation of cocktail of broccoli phytochemicals on AuNPs facilitates the cellular internalization, thereby validating the in vitro therapeutic effects of these nanoparticles. Detailed analyses performed by combination of gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS–MS) have confirmed the ...


Bioconjugate Chemistry | 2016

Interrogating the Role of Receptor-Mediated Mechanisms: Biological Fate of Peptide-Functionalized Radiolabeled Gold Nanoparticles in Tumor Mice

Francisco J. Silva; Ajit Zambre; Maria Paula Cabral Campello; Lurdes Gano; Isabel Santos; A.M. Ferraria; Maria João Ferreira; Amolak Singh; Anandhi Upendran; António Paulo; Raghuraman Kannan

To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake.

Collaboration


Dive into the Ajit Zambre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zahra Afrasiabi

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Evan Boote

University of Missouri

View shared research outputs
Researchain Logo
Decentralizing Knowledge