Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajmal S. Mian is active.

Publication


Featured researches published by Ajmal S. Mian.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2007

An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition

Ajmal S. Mian; Mohammed Bennamoun; Robyn A. Owens

We present a fully automatic face recognition algorithm and demonstrate its performance on the FRGC v2.0 data. Our algorithm is multimodal (2D and 3D) and performs hybrid (feature based and holistic) matching in order to achieve efficiency and robustness to facial expressions. The pose of a 3D face along with its texture is automatically corrected using a novel approach based on a single automatically detected point and the Hotelling transform. A novel 3D spherical face representation (SFR) is used in conjunction with the scale-invariant feature transform (SIFT) descriptor to form a rejection classifier, which quickly eliminates a large number of candidate faces at an early stage for efficient recognition in case of large galleries. The remaining faces are then verified using a novel region-based matching approach, which is robust to facial expressions. This approach automatically segments the eyes- forehead and the nose regions, which are relatively less sensitive to expressions and matches them separately using a modified iterative closest point (ICP) algorithm. The results of all the matching engines are fused at the metric level to achieve higher accuracy. We use the FRGC benchmark to compare our results to other algorithms that used the same database. Our multimodal hybrid algorithm performed better than others by achieving 99.74 percent and 98.31 percent verification rates at a 0.001 false acceptance rate (FAR) and identification rates of 99.02 percent and 95.37 percent for probes with a neutral and a nonneutral expression, respectively.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006

Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes

Ajmal S. Mian; Mohammed Bennamoun; Robyn A. Owens

Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency


International Journal of Computer Vision | 2010

On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes

Ajmal S. Mian; Mohammed Bennamoun; Robyn A. Owens

Abstract3D object recognition from local features is robust to occlusions and clutter. However, local features must be extracted from a small set of feature rich keypoints to avoid computational complexity and ambiguous features. We present an algorithm for the detection of such keypoints on 3D models and partial views of objects. The keypoints are highly repeatable between partial views of an object and its complete 3D model. We also propose a quality measure to rank the keypoints and select the best ones for extracting local features. Keypoints are identified at locations where a unique local 3D coordinate basis can be derived from the underlying surface in order to extract invariant features. We also propose an automatic scale selection technique for extracting multi-scale and scale invariant features to match objects at different unknown scales. Features are projected to a PCA subspace and matched to find correspondences between a database and query object. Each pair of matching features gives a transformation that aligns the query and database object. These transformations are clustered and the biggest cluster is used to identify the query object. Experiments on a public database revealed that the proposed quality measure relates correctly to the repeatability of keypoints and the multi-scale features have a recognition rate of over 95% for up to 80% occluded objects.


International Journal of Computer Vision | 2008

Keypoint Detection and Local Feature Matching for Textured 3D Face Recognition

Ajmal S. Mian; Mohammed Bennamoun; Robyn A. Owens

Abstract Holistic face recognition algorithms are sensitive to expressions, illumination, pose, occlusions and makeup. On the other hand, feature-based algorithms are robust to such variations. In this paper, we present a feature-based algorithm for the recognition of textured 3D faces. A novel keypoint detection technique is proposed which can repeatably identify keypoints at locations where shape variation is high in 3D faces. Moreover, a unique 3D coordinate basis can be defined locally at each keypoint facilitating the extraction of highly descriptive pose invariant features. A 3D feature is extracted by fitting a surface to the neighborhood of a keypoint and sampling it on a uniform grid. Features from a probe and gallery face are projected to the PCA subspace and matched. The set of matching features are used to construct two graphs. The similarity between two faces is measured as the similarity between their graphs. In the 2D domain, we employed the SIFT features and performed fusion of the 2D and 3D features at the feature and score-level. The proposed algorithm achieved 96.1% identification rate and 98.6% verification rate on the complete FRGC v2 data set.


computer vision and pattern recognition | 2011

Sparse approximated nearest points for image set classification

Yiqun Hu; Ajmal S. Mian; Robyn A. Owens

Classification based on image sets has recently attracted great research interest as it holds more promise than single image based classification. In this paper, we propose an efficient and robust algorithm for image set classification. An image set is represented as a triplet: a number of image samples, their mean and an affine hull model. The affine hull model is used to account for unseen appearances in the form of affine combinations of sample images. We introduce a novel between-set distance called Sparse Approximated Nearest Point (SANP) distance. Unlike existing methods, the dissimilarity of two sets is measured as the distance between their nearest points, which can be sparsely approximated from the image samples of their respective set. Different from standard sparse modeling of a single image, this novel sparse formulation for the image set enforces sparsity on the sample coefficients rather than the model coefficients and jointly optimizes the nearest points as well as their sparse approximations. A convex formulation for searching the optimal SANP between two sets is proposed and the accelerated proximal gradient method is adapted to efficiently solve this optimization. Experimental evaluation was performed on the Honda, MoBo and Youtube datasets. Comparison with existing techniques shows that our method consistently achieves better results.


International Journal of Computer Vision | 2006

A Novel Representation and Feature Matching Algorithm for Automatic Pairwise Registration of Range Images

Ajmal S. Mian; Mohammed Bennamoun; Robyn A. Owens

Automatic registration of range images is a fundamental problem in 3D modeling of free-from objects. Various feature matching algorithms have been proposed for this purpose. However, these algorithms suffer from various limitations mainly related to their applicability, efficiency, robustness to resolution, and the discriminating capability of the used feature representation. We present a novel feature matching algorithm for automatic pairwise registration of range images which overcomes these limitations. Our algorithm uses a novel tensor representation which represents semi-local 3D surface patches of a range image by third order tensors. Multiple tensors are used to represent each range image. Tensors of two range images are matched to identify correspondences between them. Correspondences are verified and then used for pairwise registration of the range images. Experimental results show that our algorithm is accurate and efficient. Moreover, it is robust to the resolution of the range images, the number of tensors per view, the required amount of overlap, and noise. Comparisons with the spin image representation revealed that our representation has more discriminating capabilities and performs better at a low resolution of the range images.


workshop on applications of computer vision | 2013

Using Kinect for face recognition under varying poses, expressions, illumination and disguise

Billy Yl Li; Ajmal S. Mian; Wanquan Liu; Aneesh Krishna

We present an algorithm that uses a low resolution 3D sensor for robust face recognition under challenging conditions. A preprocessing algorithm is proposed which exploits the facial symmetry at the 3D point cloud level to obtain a canonical frontal view, shape and texture, of the faces irrespective of their initial pose. This algorithm also fills holes and smooths the noisy depth data produced by the low resolution sensor. The canonical depth map and texture of a query face are then sparse approximated from separate dictionaries learned from training data. The texture is transformed from the RGB to Discriminant Color Space before sparse coding and the reconstruction errors from the two sparse coding steps are added for individual identities in the dictionary. The query face is assigned the identity with the smallest reconstruction error. Experiments are performed using a publicly available database containing over 5000 facial images (RGB-D) with varying poses, expressions, illumination and disguise, acquired using the Kinect sensor. Recognition rates are 96.7% for the RGB-D data and 88.7% for the noisy depth data alone. Our results justify the feasibility of low resolution 3D sensors for robust face recognition.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

Face Recognition Using Sparse Approximated Nearest Points between Image Sets

Yiqun Hu; Ajmal S. Mian; Robyn A. Owens

We propose an efficient and robust solution for image set classification. A joint representation of an image set is proposed which includes the image samples of the set and their affine hull model. The model accounts for unseen appearances in the form of affine combinations of sample images. To calculate the between-set distance, we introduce the Sparse Approximated Nearest Point (SANP). SANPs are the nearest points of two image sets such that each point can be sparsely approximated by the image samples of its respective set. This novel sparse formulation enforces sparsity on the sample coefficients and jointly optimizes the nearest points as well as their sparse approximations. Unlike standard sparse coding, the data to be sparsely approximated are not fixed. A convex formulation is proposed to find the optimal SANPs between two sets and the accelerated proximal gradient method is adapted to efficiently solve this optimization. We also derive the kernel extension of the SANP and propose an algorithm for dynamically tuning the RBF kernel parameter while matching each pair of image sets. Comprehensive experiments on the UCSD/Honda, CMU MoBo, and YouTube Celebrities face datasets show that our method consistently outperforms the state of the art.


International Journal of Computer Vision | 2009

An Expression Deformation Approach to Non-rigid 3D Face Recognition

Faisal R. Al-Osaimi; Mohammed Bennamoun; Ajmal S. Mian

The accuracy of non-rigid 3D face recognition approaches is highly influenced by their capacity to differentiate between the deformations caused by facial expressions from the distinctive geometric attributes that uniquely characterize a 3D face, interpersonal disparities. We present an automatic 3D face recognition approach which can accurately differentiate between expression deformations and interpersonal disparities and hence recognize faces under any facial expression. The patterns of expression deformations are first learnt from training data in PCA eigenvectors. These patterns are then used to morph out the expression deformations. Similarity measures are extracted by matching the morphed 3D faces. PCA is performed in such a way it models only the facial expressions leaving out the interpersonal disparities. The approach was applied on the FRGC v2.0 dataset and superior recognition performance was achieved. The verification rates at 0.001 FAR were 98.35% and 97.73% for scans under neutral and non-neutral expressions, respectively.


european conference on computer vision | 2014

HOPC: Histogram of Oriented Principal Components of 3D Pointclouds for Action Recognition

Hossein Rahmani; Arif Mahmood; Du Q. Huynh; Ajmal S. Mian

Existing techniques for 3D action recognition are sensitive to viewpoint variations because they extract features from depth images which change significantly with viewpoint. In contrast, we directly process the pointclouds and propose a new technique for action recognition which is more robust to noise, action speed and viewpoint variations. Our technique consists of a novel descriptor and keypoint detection algorithm. The proposed descriptor is extracted at a point by encoding the Histogram of Oriented Principal Components (HOPC) within an adaptive spatio-temporal support volume around that point. Based on this descriptor, we present a novel method to detect Spatio-Temporal Key-Points (STKPs) in 3D pointcloud sequences. Experimental results show that the proposed descriptor and STKP detector outperform state-of-the-art algorithms on three benchmark human activity datasets. We also introduce a new multiview public dataset and show the robustness of our proposed method to viewpoint variations.

Collaboration


Dive into the Ajmal S. Mian's collaboration.

Top Co-Authors

Avatar

Mohammed Bennamoun

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Faisal Shafait

National University of Sciences and Technology

View shared research outputs
Top Co-Authors

Avatar

Robyn A. Owens

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Naveed Akhtar

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Syed Zulqarnain Gilani

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Zohaib Khan

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Muhammad Uzair

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hossein Rahmani

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge