Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akashi Ohtaki is active.

Publication


Featured researches published by Akashi Ohtaki.


Journal of the American Chemical Society | 2013

Carbonyl Sulfide Hydrolase from Thiobacillus thioparus Strain THI115 Is One of the β-Carbonic Anhydrase Family Enzymes

Takahiro Ogawa; Keiichi Noguchi; Masahiko Saito; Yoshiko Nagahata; Hiromi Kato; Akashi Ohtaki; Hiroshi Nakayama; Naoshi Dohmae; Yasuhiko Matsushita; Masafumi Odaka; Masafumi Yohda; Hiroshi Nyunoya; Yoko Katayama

Carbonyl sulfide (COS) is an atmospheric trace gas leading to sulfate aerosol formation, thereby participating in the global radiation balance and ozone chemistry, but its biological sinks are not well understood. Thiobacillus thioparus strain THI115 can grow on thiocyanate (SCN(-)) as its sole energy source. Previously, we showed that SCN(-) is first converted to COS by thiocyanate hydrolase in T. thioparus strain THI115. In the present work, we purified, characterized, and determined the crystal structure of carbonyl sulfide hydrolase (COSase), which is responsible for the degradation of COS to H2S and CO2, the second step of SCN(-) assimilation. COSase is a homotetramer composed of a 23.4 kDa subunit containing a zinc ion in its catalytic site. The amino acid sequence of COSase is homologous to the β-class carbonic anhydrases (β-CAs). Although the crystal structure including the catalytic site resembles those of the β-CAs, CO2 hydration activity of COSase is negligible compared to those of the β-CAs. The α5 helix and the extra loop (Gly150-Pro158) near the N-terminus of the α6 helix narrow the substrate pathway, which could be responsible for the substrate specificity. The k(cat)/K(m) value, 9.6 × 10(5) s(-1) M(-1), is comparable to those of the β-CAs. COSase hydrolyzes COS over a wide concentration range, including the ambient level, in vitro and in vivo. COSase and its structurally related enzymes are distributed in the clade D in the phylogenetic tree of β-CAs, suggesting that COSase and its related enzymes are one of the catalysts responsible for the global sink of COS.


Journal of Molecular Biology | 2002

Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) at 1.6 A resolution and alpha-amylase 2 (TVAII) at 2.3 A resolution.

Shigehiro Kamitori; Akemi Abe; Akashi Ohtaki; Akira Kaji; Takashi Tonozuka; Yoshiyuki Sakano

The X-ray crystal structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) and alpha-amylase 2 (TVAII) have been determined at 1.6 A and 2.3 A resolution, respectively. The structures of TVAI and TVAII have been refined, R-factor of 0.182 (R(free)=0.206) and 0.179 (0.224), respectively, with good chemical geometries. Both TVAI and TVAII have four domains, N, A, B and C, and all very similar in structure. However, there are some differences in the structures between them. Domain N of TVAI interacts strongly with domains A and B, giving a spherical shape structure to the enzyme, while domain N of TVAII is isolated from the other domains, which leads to the formation of a dimer. TVAI has three bound Ca ions, whereas TVAII has only one. TVAI has eight extra loops compared to TVAII, while TVAII has two extra loops compared to TVAI. TVAI can hydrolyze substrates more efficiently than TVAII with a high molecular mass such as starch, while TVAII is much more active against cyclodextrins than TVAI and other alpha-amylases. A structural comparison of the active sites has clearly revealed this difference in substrate specificity.


Biochimica et Biophysica Acta | 2010

Structure and Characterization of Amidase from Rhodococcus sp. N-771: Insight into the Molecular Mechanism of Substrate Recognition

Akashi Ohtaki; Kensuke Murata; Yuichi Sato; Keiichi Noguchi; Hideyuki Miyatake; Naoshi Dohmae; Kazuhiro Yamada; Masafumi Yohda; Masfumi Odaka

In this study, we have structurally characterized the amidase of a nitrile-degrading bacterium, Rhodococcus sp. N-771 (RhAmidase). RhAmidase belongs to amidase signature (AS) family, a group of amidase families, and is responsible for the degradation of amides produced from nitriles by nitrile hydratase. Recombinant RhAmidase exists as a dimer of about 107 kDa. RhAmidase can hydrolyze acetamide, propionamide, acrylamide and benzamide with kcat/Km values of 1.14+/-0.23 mM(-1)s(-1), 4.54+/-0.09 mM(-1)s(-1), 0.087+/-0.02 mM(-1)s(-1) and 153.5+/-7.1 mM(-1)s(-1), respectively. The crystal structures of RhAmidase and its inactive mutant complex with benzamide (S195A/benzamide) were determined at resolutions of 2.17 A and 2.32 A, respectively. RhAmidase has three domains: an N-terminal alpha-helical domain, a small domain and a large domain. The N-terminal alpha-helical domain is not found in other AS family enzymes. This domain is involved in the formation of the dimer structure and, together with the small domain, forms a narrow substrate-binding tunnel. The large domain showed high structural similarities to those of other AS family enzymes. The Ser-cis Ser-Lys catalytic triad is located in the large domain. But the substrate-binding pocket of RhAmidase is relatively narrow, due to the presence of the helix alpha13 in the small domain. The hydrophobic residues from the small domain are involved in recognizing the substrate. The small domain likely participates in substrate recognition and is related to the difference of substrate specificities among the AS family amidases.


Journal of Molecular Biology | 2008

Structure and Molecular Dynamics Simulation of Archaeal Prefoldin: The Molecular Mechanism for Binding and Recognition of Nonnative Substrate Proteins

Akashi Ohtaki; Hiroshi Kida; Yusuke Miyata; Naoki Ide; Akihiro Yonezawa; Takatoshi Arakawa; Ryo Iizuka; Keiichi Noguchi; Akiko Kita; Masafumi Odaka; Kunio Miki; Masafumi Yohda

Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 A resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the beta subunit is essentially involved in substrate binding and that the alpha subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the beta subunit in the hydrophobic groove have shown that beta Ile107 has a critical role in forming the hydrophobic groove.


Biochemistry | 2008

Modulation of redox potential and alteration in reactivity via the peroxide shunt pathway by mutation of cytochrome P450 around the proximal heme ligand.

Hirotoshi Matsumura; Masahiro Wakatabi; Sayaka Omi; Akashi Ohtaki; Nobuhumi Nakamura; Masafumi Yohda; Hiroyuki Ohno

In the thermophilic cytochrome P450 from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 (P450st), a phenylalanine residue at position 310 and an alanine residue at position 320 are located close to the heme thiolate ligand, Cys317. Single site-directed mutants F310A and A320Q and double mutant F310A/A320Q have been constructed. All mutant enzymes as well as wild-type (WT) P450st were expressed at high levels. The substitution of F310 with Ala and of A320 with Gln induced shifts in redox potential and blue shifts in Soret absorption of ferrous-CO forms, while spectral characterization showed that in the resting state, the mutants almost retained the structural integrity of the active site. The redox potential of the heme varied as follows: -481 mV (WT), -477 mV (A320Q), -453 mV (F310A), and -450 mV (F310A/A320Q). The trend in the Soret band of the ferrous-CO form was as follows: 450 nm (WT) < 449 nm (A320Q) < 446 nm (F310A) < 444 nm (F310A/A320Q). These results established that the reduction potential and electron density on the heme iron are modulated by the Phe310 and Ala320 residues in P450st. The electron density on the heme decreases in the following order: WT > A320Q > F310A > F310A/A320Q. The electron density on the heme iron infers an essential role in P450 activity. The decrease in electron density interferes with the formation of a high-valent oxo-ferryl species called Compound I. However, steady-state turnover rates of styrene epoxidation with H2O2 show the following trend: WT approximately equal to A320Q < F310A approximately equal to F310A/A320Q. The shunt pathway which can provide the two electrons and oxygen required for a P450 reaction instead of NAD(P)H and dioxygen can rule out the first and second heme reduction in the catalytic process. Because the electron density on the heme iron might be deeply involved in the k cat values in this system, the intermediate Compound 0 which is the precursor species of Compound I mainly appears to participate dominantly in epoxidation with H2O2.


Journal of Biological Inorganic Chemistry | 2010

Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase

Yasuaki Yamanaka; Koichi Hashimoto; Akashi Ohtaki; Keiichi Noguchi; Masafumi Yohda; Masafumi Odaka

Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe3+ or Co3+ center with two modified Cys ligands: cysteine sulfininate (Cys-SO2−) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, αS113A and βY72F. The αS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV–vis absorption spectra indicated that the electronic state of the Fe center was altered by the αS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the αS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV–vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The βY72F mutant exhibited no activity. The structure of the βY72F mutant was highly conserved but was found to be the inactivated state, with αCys114-SO(H) oxidized to Cys-SO2−, suggesting that βTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.


Journal of Structural Biology | 2010

Crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase from the hyperthermophile Thermotoga maritima for insights into the coordination of conformational changes and an inhibitor binding.

Mihoko Takenoya; Akashi Ohtaki; Keiichi Noguchi; Kiwamu Endo; Yasuyuki Sasaki; Kanju Ohsawa; Shunsuke Yajima; Masafumi Yohda

Isopentenyl diphosphate is a precursor of various isoprenoids and is produced by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids of plants, protozoa and many eubacteria. A key enzyme in the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), has been shown to be the target of fosmidomycin, which works as an antimalarial, antibacterial and herbicidal compound. In this paper, we report studies of kinetics and the crystal structures of the thermostable DXR from the hyperthermophile Thermotoga maritima. Unlike the mesophilic DXRs, Thermotoga DXR (tDXR) showed activity only with Mg(2+) at its growth temperature. We solved the crystal structures of tDXR with and without fosmidomycin. The structure without fosmidomycin but unexpectedly bound with 2-methyl-2,4-pentanediol (MPD), revealing a new extra space available for potential drug design. This structure adopted the closed form by rigid domain rotation but without the flexible loop over the active site, which was considered as a novel conformation. Further, the conserved Asp residue responsible for cation binding seemed to play an important role in adjusting the position of fosmidomycin. Taken together, our kinetic and the crystal structures illustrate the binding mode of fosmidomycin that leads to its slow, tight binding according to the conformational changes of DXR.


Proteins | 2007

Structure of aspartate racemase complexed with a dual substrate analogue, citric acid, and implications for the reaction mechanism

Akashi Ohtaki; Yohsuke Nakano; Ryo Iizuka; Takatoshi Arakawa; Kazuhiro Yamada; Masafumi Odaka; Masafumi Yohda

Pyrococcus horikoshii OT3 aspartate racemase (PhAspR) catalyzes the interconversion between L‐ and D‐aspartate. The X‐ray structure of PhAspR revealed a pseudo mirror‐symmetric distribution of the residues around its active site, which is very reasonable for its chiral substrates, L‐aspartate and D‐aspartate. In this study, we have determined the crystal structure of an inactive mutant PhAspR complexed with a citric acid (Cit) at a resolution of 2.0 Å. Cit contains the substrate analogue moieties of both L‐ and D‐aspartate and exhibits a low competitive inhibition activity against PhAspR. In the structure, Cit binds to the catalytic site of PhAspR, which induced the conformational change to close the active site. The distance between the thiolates was estimated to be 7.4 Å, representing a catalytic state and the substrate binding modes of PhAspR. Two conserved basic residues, Arg48 and Lys164, seem to be indispensable for PhAspR activity. Arg48 is thought to be responsible for recognizing carboxyl groups of the substrates L‐/D‐aspartates and stabilizing a reaction intermediate, and Lys164 is responsible for stabilizing a closed state structure. In this structure, the L‐aspartate moiety of Cit is likely to take the substrate position of the PhAspR–substrate complex, which is very similar to that of Glutamate racemase. There is also another possibility that the two substrate analogue moieties of the bound Cit reflect the binding modes of both L‐ and D‐aspartates. Based on the PhAspR–Cit complex structure, the reaction mechanism of aspartate racemase was elucidated. Proteins 2008.


Journal of Molecular Biology | 2008

Functional characterization of recombinant prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp strain KS-1

Ryo Iizuka; Yuri Sugano; Naoki Ide; Akashi Ohtaki; Takao Yoshida; Shinsuke Fujiwara; Tadayuki Imanaka; Masafumi Yohda

Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two alpha subunits and four beta subunits with the structure of a double beta-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (alpha1, alpha2, beta1, and beta2) from T. KS-1. All of them (alpha1-beta1, alpha2-beta1, alpha1-beta2, and alpha2-beta2) exist as alpha(2)beta(4) heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the beta1 subunit interacted with the chaperonins more strongly than those with the beta2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.


Carbohydrate Research | 2001

Role of Phe286 in the recognition mechanism of cyclomaltooligosaccharides (cyclodextrins) by Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII). X-ray structures of the mutant TVAIIs, F286A and F286Y, and kinetic analyses of the Phe286-replaced mutant TVAIIs.

Akashi Ohtaki; Shin Kondo; Yoichiro Shimura; Takashi Tonozuka; Yoshiyuki Sakano; Shigehiro Kamitori

Phe286 located in the center of the active site of alpha-amylase 2 from Thermoactinomyces vulgaris R-47 (TVAII) plays an important role in the substrate recognition for cyclomaltooligosaccharides (cyclodextrins). The X-ray structures of mutant TVAIIs with the replacement of Phe286 by Ala (F286A) and Tyr (F286Y) were determined at 3.2 A resolution. Their structures have no significant differences from that of the wild-type enzyme. The kinetic analyses of Phe286-replaced variants showed that the variants with non-aromatic residues, Ala (F286A) and Leu (F286L), have lower enzymatic activities than those with aromatic residues, Tyr (F286Y) and Trp (F286W), and the replacement of Phe286 affects enzymatic activities for CDs more than those for starch.

Collaboration


Dive into the Akashi Ohtaki's collaboration.

Top Co-Authors

Avatar

Masafumi Yohda

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Keiichi Noguchi

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Tonozuka

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshiyuki Sakano

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuaki Yamanaka

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge