Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akhilesh Kumar Shakya is active.

Publication


Featured researches published by Akhilesh Kumar Shakya.


Journal of the Royal Society Interface | 2012

Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases

Akhilesh Kumar Shakya; Kutty Selva Nandakumar

Polymers as an adjuvant are capable of enhancing the vaccine potential against various infectious diseases and also are being used to study the actual autoimmune responses using self-antigen(s) without involving any major immune deviation. Several natural polysaccharides and their derivatives originating from microbes and plants have been tested for their adjuvant potential. Similarly, numerous synthetic polymers including polyelectrolytes, polyesters, polyanhydrides, non-ionic block copolymers and external stimuli responsive polymers have demonstrated adjuvant capacity using different antigens. Adjuvant potential of these polymers mainly depends on their solubility, molecular weight, degree of branching and the conformation of polymeric backbone. These polymers have the ability not only to activate humoral but also cellular immune responses in the host. The depot effect, which involves slow release of antigen over a long duration of time, using different forms (particulate, solution and gel) of polymers, and enhances the co-stimulatory signals for optimal immune activation, is the underlying principle of their adjuvant properties. Possibly, polymers may also interact and activate various toll-like receptors and inflammasomes, thus involving several innate immune system players in the ensuing immune response. Biocompatibility, biodegradability, easy production and purification, and non-toxic properties of most of the polymers make them attractive candidates for substituting conventional adjuvants that have undesirable effects in the host.


Journal of Biomedical Materials Research Part A | 2014

Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals

Akhilesh Kumar Shakya; Rikard Holmdahl; Kutty Selva Nandakumar; Ashok Kumar

Biocompatibility and in vivo degradation are two important characteristics of cell scaffolds. We evaluated these properties for four different polymeric macroporous cryogels, polyvinylcaprolactam, polyvinyl alcohol-alginate-bioactive glass composite, polyhydroxyethylmethacrylate-gelatin (pHEMA-gelatin), and chitosan-agarose-gelatin in mice. All the cryogels were synthesized at subzero temperature and were implanted subcutaneously in C57Bl/10.Q inbred mice. Both local and systemic toxicities were negligible as determined by serum tumor necrosis factor α analysis and histology of surrounding tissues nearby the implants. Complete integration of cryogels into the surrounding tissues with neovascular formation was evident in all the mice. At the implantation site, massive infiltration of macrophages and few dendritic cells were observed but neutrophils and mast cells were clearly absent. Macrophage infiltrations were observed even inside the pores of cryogel implants. To ascertain whether oxidative radicals are involved in the cryogel degradation, we implanted these gels in mice deficient for reactive oxygen species (ROS) production. Rapid gel degradation was observed in the absence of ROS, and there was no significant difference in the biodegradation of these cryogels between ROS sufficient and deficient mice thereby excluding any major role for ROS in this process. Thus, we demonstrate the biocompatibility and ROS-independent biodegradable properties of cryogels that could be useful for tissue-specific tissue engineering applications.


Journal of the Royal Society Interface | 2011

Adjuvant properties of a biocompatible thermo-responsive polymer of N-isopropylacrylamide in autoimmunity and arthritis

Akhilesh Kumar Shakya; Ashok Kumar; Kutty Selva Nandakumar

To evaluate the thermo-responsive poly(N-isopropylacrylamide) (PNiPAAm) polymer as an adjuvant, we synthesized PNiPAAm through free radical polymerization and characterized it both in vitro and in vivo. The polymer when mixed with collagen type II (CII) induced antigen-specific autoimmunity and arthritis. Mice immunized with PNiPAAm–CII developed significant levels of CII-specific IgG response comprising major IgG subclasses. Antigen-specific cellular recall response was also enhanced in these mice, while negligible level of IFN-γ was detected in splenocyte cultures, in vitro. PNiPAAm–CII-immunized arthritic mouse paws showed massive infiltration of immune cells and extensive damage to cartilage and bone. As determined by immunostaining, most of the CII protein retained its native configuration after injecting it with PNiPAAm in naive mice. Physical adsorption of CII and the high-molecular-weight form of moderately hydrophobic PNiPAAm induced a significant anti-CII antibody response. Similar to CII, mice immunized with PNiPAAm and ovalbumin (PNiPAAm–Ova) induced significant anti-ovalbumin antibody response. Comparable levels of serum IFN-γ, IL-1β and IL-17 were observed in ovalbumin-immunized mice with complete Freund, incomplete Freund (CFA and IFA) or PNiPAAm adjuvants. However, serum IL-4 levels were significantly higher in PNiPAAm–Ova and CFA–Ova groups compared with the IFA–Ova group. Thus, we show for the first time, biocompatible and biodegradable thermo-responsive PNiPAAm can be used as an adjuvant in several immunological applications as well as in better understanding of the autoimmune responses against self-proteins.


Journal of Controlled Release | 2016

Mucosal vaccine delivery: Current state and a pediatric perspective

Akhilesh Kumar Shakya; Mohammed Y.E. Chowdhury; Wenqian Tao; Harvinder S. Gill

Most childhood infections occur via the mucosal surfaces, however, parenterally delivered vaccines are unable to induce protective immunity at these surfaces. In contrast, delivery of vaccines via the mucosal routes can allow antigens to interact with the mucosa-associated lymphoid tissue (MALT) to induce both mucosal and systemic immunity. The induced mucosal immunity can neutralize the pathogen on the mucosal surface before it can cause infection. In addition to reinforcing the defense at mucosal surfaces, mucosal vaccination is also expected to be needle-free, which can eliminate pain and the fear of vaccination. Thus, mucosal vaccination is highly appealing, especially for the pediatric population. However, vaccine delivery across mucosal surfaces is challenging because of the different barriers that naturally exist at the various mucosal surfaces to keep the pathogens out. There have been significant developments in delivery systems for mucosal vaccination. In this review we provide an introduction to the MALT, highlight barriers to vaccine delivery at different mucosal surfaces, discuss different approaches that have been investigated for vaccine delivery across mucosal surfaces, and conclude with an assessment of perspectives for mucosal vaccination in the context of the pediatric population.


Vaccine | 2015

A comparative study of microneedle-based cutaneous immunization with other conventional routes to assess feasibility of microneedles for allergy immunotherapy

Akhilesh Kumar Shakya; Harvinder S. Gill

Feasibility of microneedles (MNs) for cutaneous allergen specific immunotherapy (ASI) is demonstrated by comparing against currently practiced subcutaneous (SC) allergen immunotherapy, and the intramuscular (IM) and intraperitoneal (IP) routes. In Balb/c mice with ovalbumin (Ova, 25 μg) as the allergen MNs-Ova without alum induced anti-Ova IgG response comparable to IM but higher than SC and IP groups (250 μg alum was additionally used for SC, IM and IP groups). MNs-Ova induced higher anti-Ova IgG1 and IgG2a responses in comparison to other routes; however IgG2b and IgG3 responses were significantly lower than the IP group. As in SC group, anti-Ova IgE and IgA were low for MNs-Ova. Furthermore, MNs-Ova induced expression of IL-5, IL-13, IFN-γ and IL-1β cytokines in serum, but at significantly lower levels than other routes. Overall, MNs-Ova induced allergen-specific IgG antibodies, and activated the Th1 pathway (evidenced by higher IgG2a levels), suggesting their potential use for painless ASI.


Colloids and Surfaces B: Biointerfaces | 2015

Fabrication of macroporous cryogels as potential hepatocyte carriers for bioartificial liver support.

Era Jain; Apeksha Damania; Akhilesh Kumar Shakya; Anupam Kumar; Shiv Kumar Sarin; Ashok Kumar

Two different cryogels composed of copolymer of acrylonitrile (AN) and N-vinyl-2-pyrrolidone (NVP) (poly(AN-co-NVP)) and interpenetrated polymer networks (IPN) of chitosan and poly(N-isopropylacrylamide) (poly(NiPAAm)-chitosan) were fabricated by gelation at sub-zero temperatures. The two cryogels possess an interconnected network of macropores of size 20-100 μm and efficient transport properties as determined by physiochemical analysis. Both cryogels support in vitro growth and function of fibroblasts (COS-7) and human liver hepatocarcinoma cells (HepG2). The cryogels are hemocompatible as demonstrated by low albumin adsorption and platelet adherence. Furthermore, in vivo implantation of poly(NiPAAm)-chitosan cryogel in mice shows its biocompatibility with the surrounding tissue. Primary rat hepatocytes grown on poly(NiPAAm)-chitosan cryogel for 96 h formed cellular aggregates and maintained their functions in terms of, ammonia removal, ureagenesis and drug detoxification. Cryogel-based closed continuous bioreactor systems could maintain HepG2 cells at high density for 7 days. Off-line clinical evaluation of these cryogel-based bioreactors showed the ability of immobilized cells to detoxify circulating plasma obtained from patients with acute on chronic liver failure (ACLF). Altogether, the presented data suggests cryogels as a potential bioreactor matrix for bio-artificial liver support system.


American Journal of Pathology | 2011

Collagen Type II and a Thermo-Responsive Polymer of N-Isopropylacrylamide Induce Arthritis Independent of Toll-Like Receptors A Strong Influence by Major Histocompatibility Complex Class II and Ncf1 Genes

Akhilesh Kumar Shakya; Ashok Kumar; Dorota Klaczkowska; Malin Hultqvist; Kristin Hagenow; Rikard Holmdahl; Kutty Selva Nandakumar

We established and characterized an arthritis mouse model using collagen type II (CII) and a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNiPAAm). The new PNiPAAm adjuvant is TLR-independent, as all immunized TLR including MyD88-deficient mice developed an anti-CII response. Unlike other adjuvants, PNiPPAm did not skew the cytokine response (IL-1β, IFN-γ, IL-4, and IL-17), as there was no immune deviation towards any one type of immune spectrum after immunization with CII/PNiPPAm. Hence, using PNiPAAm, we studied the actual immune response to the self-protein, CII. We observed arthritis and autoimmunity development in several murine strains having different major histocompatibility complex (MHC) haplotypes after CII/PNiPAAm immunization but with a clear MHC association pattern. Interestingly, C57Bl/6 mice did not develop CII-induced arthritis, with PNiPAAm demonstrating absolute requirement for a classical adjuvant. Presence of a gene (Ncf1) mutation in the NADPH oxidation complex has a profound influence in arthritis and using PNiPAAm we could show that the high CIA severity in Ncf1 mutated mice is independent of any classical adjuvant. Macrophages, neutrophils, eosinophils, and osteoclasts but not mast cells dominated the inflamed joints. Furthermore, arthritis induction in the adjuvant-free, eosinophil-dependent Vβ12 DBA/1 mice could be shown to develop arthritis independent of eosinophils using CII/PNiPAAm. Thus, biocompatible and biodegradable PNiPAAm offers unique opportunities to study actual autoimmunity independent of TLR and a particular cytokine phenotype profile.


Vaccine | 2013

Characterization of chemically defined poly-N-isopropylacrylamide based copolymeric adjuvants

Akhilesh Kumar Shakya; Rikard Holmdahl; Kutty Selva Nandakumar; Ashok Kumar

PNiPAAm is a thermo-responsive polymer with an adjuvant activity. To identify the minimal chemical structure present within PNiPAAm responsible for its adjuvant property, three different constituent polymers with specific functional groups were synthesized through free radical reaction and tested their adjuvant potential along with PNiPAAm. Among them, polymer with isopropyl attached to an amide showed maximal adjuvant activity in rodents followed by polymer with amide or ketone functional groups. However, secondary amine containing polymer did not show any adjuvant activity. In addition, to improve the adjuvant properties of PNiPAAm, we incorporated an affinity ligand, boronate. At first, we synthesized and characterized the dual responsive copolymers PNiPAAm-co-VPBA and PNiPAAm-co-VPBA-co-DMAEMA. Biocompatibility of these copolymers was confirmed both in vitro and in vivo. Mice injected with these copolymers mixed with collagen (CII) developed significant levels of anti-CII antibodies comprising of all the major IgG subclasses and an increased T cell activation. At the injection site, massive infiltration of immune cells was observed. However, only PNiPAAm-co-VPBA-co-DMAEMA-CII induced arthritis in mice after injection of 0.5M fructose confirming the importance of effective release of CII from the polymer for its adjuvant activity. Thus, a fine balance of hydrophobicity and hydrophilicity promotes adjuvant properties and continuous release of antigen, in this case CII, from polymer is essential for its adjuvant activity.


American Journal of Pathology | 2011

Regular articleMusculoskeletal pathologyCollagen Type II and a Thermo-Responsive Polymer of N-Isopropylacrylamide Induce Arthritis Independent of Toll-Like Receptors: A Strong Influence by Major Histocompatibility Complex Class II and Ncf1 Genes

Akhilesh Kumar Shakya; Ashok Kumar; Dorota Klaczkowska; Malin Hultqvist; Kristin Hagenow; Rikard Holmdahl; Kutty Selva Nandakumar

We established and characterized an arthritis mouse model using collagen type II (CII) and a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNiPAAm). The new PNiPAAm adjuvant is TLR-independent, as all immunized TLR including MyD88-deficient mice developed an anti-CII response. Unlike other adjuvants, PNiPPAm did not skew the cytokine response (IL-1β, IFN-γ, IL-4, and IL-17), as there was no immune deviation towards any one type of immune spectrum after immunization with CII/PNiPPAm. Hence, using PNiPAAm, we studied the actual immune response to the self-protein, CII. We observed arthritis and autoimmunity development in several murine strains having different major histocompatibility complex (MHC) haplotypes after CII/PNiPAAm immunization but with a clear MHC association pattern. Interestingly, C57Bl/6 mice did not develop CII-induced arthritis, with PNiPAAm demonstrating absolute requirement for a classical adjuvant. Presence of a gene (Ncf1) mutation in the NADPH oxidation complex has a profound influence in arthritis and using PNiPAAm we could show that the high CIA severity in Ncf1 mutated mice is independent of any classical adjuvant. Macrophages, neutrophils, eosinophils, and osteoclasts but not mast cells dominated the inflamed joints. Furthermore, arthritis induction in the adjuvant-free, eosinophil-dependent Vβ12 DBA/1 mice could be shown to develop arthritis independent of eosinophils using CII/PNiPAAm. Thus, biocompatible and biodegradable PNiPAAm offers unique opportunities to study actual autoimmunity independent of TLR and a particular cytokine phenotype profile.


Journal of Controlled Release | 2017

Cutaneous vaccination with coated microneedles prevents development of airway allergy

Akhilesh Kumar Shakya; Chang Hyun Lee; Harvinder S. Gill

Abstract Allergy cases are increasing worldwide. Currently allergies are treated after their appearance in patients. However, now there is effort to make a preventive vaccine against allergies. The rationale is to target patient populations that are already sensitized to allergens but have yet to develop severe forms of the allergic disease, or who are susceptible to allergy development but have not yet developed them. Subcutaneous injections and the sublingual route have been used as the primary mode of preventive vaccine delivery. However, injections are painful, especially considering that they have to be given repeatedly to infants or young children. The sublingual route is hard to use since infants can’t be trained to hold the vaccine under their tongue. In the present study, we demonstrate a microneedle (MN)‐based cutaneous preventive allergy treatment against ovalbumin (Ova)‐induced airway allergy in mice. Insertion of MNs coated with Ova as a model allergen and CpG oligonucleotide as an adjuvant (MNs‐CIT) into the skin significantly induced Ova specific systemic immune response. This response was similar to that induced by hypodermic‐needle‐based delivery of Ova using the clinically‐approved subcutaneous immunotherapy (SCIT) route. MNs‐CIT regulated Th2 cytokines (IL‐4, IL‐5 & IL‐13) and anti‐inflammatory cytokines (IL‐10) in the bronchoalveolar fluid, and IL‐2 and IFN‐&ggr; cytokines in restimulated splenocyte cultures. Absence of mucus deposition inside the bronchiole wall and low collagen around the lung bronchioles after Ova‐allergen challenge further confirmed the protective role of MNs‐CIT. Overall, MNs‐CIT represents a novel minimally invasive cutaneous immunotherapy to prevent the progression of Ova induced airway allergy in mice. Graphical abstract Figure. No Caption available.

Collaboration


Dive into the Akhilesh Kumar Shakya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akshay Srivastava

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Akshay Srivastava

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge