Akhtar Nadhman
Quaid-i-Azam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akhtar Nadhman.
Free Radical Biology and Medicine | 2014
Akhtar Nadhman; Samina Nazir; Malik Ihsanullah Khan; Syeda Arooj; Muhammad Bakhtiar; Gul Shahnaz; Masoom Yasinzai
We describe daylight responsive silver (Ag) doped semiconductor nanoparticles of zinc oxide (DSNs) for photodynamic therapy (PDT) against Leishmania. The developed materials were characterized by X-ray diffraction analysis (XRD), Rutherford backscattering (RBS), diffused reflectance spectroscopy (DRS), and band-gap analysis. The Ag doped semiconductor nanoparticles of zinc oxide were PEGylated to enhance their biocompatibility. The DSNs demonstrated effective daylight response in the PDT of Leishmania protozoans, through the generation of reactive oxygen species (ROS) with a quantum yield of 0.13 by nondoped zinc oxide nanoparticles (NDSN) whereas 0.28 by DSNs. None of the nanoparticles have shown any antileishmanial activity in dark, confirming that only ROS produced in the daylight were involved in the killing of leishmanial cells. Furthermore, the synthesized nanoparticles were found biocompatible. Using reactive oxygen species scavengers, cell death was attributable mainly to 77-83% singlet oxygen and 18-27% hydroxyl radical. The nanoparticles caused permeability of the cell membrane, leading to the death of parasites. Further, the uptake of nanoparticles by Leishmania cells was confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). We believe that these DSNs are widely applicable for the PDT of leishmaniasis, cancers, and other infections due to daylight response.
Future Medicinal Chemistry | 2013
Masoom Yasinzai; Momin Khan; Akhtar Nadhman; Gul Shahnaz
Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.
Applied Microbiology and Biotechnology | 2015
Zia-Ur-Rehman Mashwani; Tariq Khan; Mubarak Ali Khan; Akhtar Nadhman
Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.
Beilstein Journal of Nanotechnology | 2015
Syeda Arooj; Samina Nazir; Akhtar Nadhman; Nafees Ahmad; Bakhtiar Muhammad; Ishaq Ahmad; Kehkashan Mazhar; Rashda Abbasi
Summary The use of photoactive nanoparticles (NPs) such as zinc oxide (ZnO) and its nanocomposites has become a promising anticancer strategy. However, ZnO has a low photocatalytic decomposition rate and the incorporation of metal ions such as silver (Ag) improves their activity. Here different formulations of ZnO:Ag (1, 3, 5, 10, 20 and 30% Ag) were synthesized by a simple co-precipitation method and characterized by powder X-ray diffraction, scanning electron microscopy, Rutherford back scattering and diffuse reflectance spectroscopy for their structure, morphology, composition and optical band gap. The NPs were investigated with regard to their different photocatalytic cytotoxic effects in human malignant melanoma (HT144) and normal (HCEC) cells. The ZnO:Ag nanocomposites killed cancer cells more efficiently than normal cells under daylight exposure. Nanocomposites having higher Ag content (10, 20 and 30%) were more toxic compared to low Ag content (1, 3 and 5%). For HT144, under daylight exposure, the IC50 values were ZnO:Ag (10%): 23.37 μg/mL, ZnO:Ag (20%): 19.95 μg/mL, and ZnO:Ag (30%): 15.78 μg/mL. ZnO:Ag (30%) was toxic to HT144 (IC50: 23.34 μg/mL) in dark as well. The three nanocomposites were further analyzed with regard to their ability to generate reactive oxygen species (ROS) and induce lipid peroxidation. The particles led to an increase in levels of ROS at cytotoxic concentrations, but only HT144 showed strongly induced MDA level. Finally, NPs were investigated for the ROS species they generated in vitro. A highly significant increase of 1O2 in the samples exposed to daylight was observed. Hydroxyl radical species, HO•, were also generated to a lesser extent. Thus, the incorporation of Ag into ZnO NPs significantly improves their photo-oxidation capabilities. ZnO:Ag nanocomposites could provide a new therapeutic option to selectively target cancer cells.
Advances in Colloid and Interface Science | 2016
Zia-Ur-Rehman Mashwani; Mubarak Ali Khan; Tariq Khan; Akhtar Nadhman
Green chemistry is the design of chemical products and processes that reduce or eliminate the generation of hazardous substances. Since the last few years, natural products especially plant secondary metabolites have been extensively explored for their potency to synthesize silver nanoparticles (AgNPs). The plant-based AgNPs are safer, energy efficient, eco-friendly, and less toxic than chemically synthesized counterparts. The secondary metabolites, ubiquitously found in plants especially the terpenoid-rich essential oils, have a significant role in AgNPs synthesis. Terpenoids belong to the largest family of natural products and are found in all kinds of organisms. Their involvement in the synthesis of plant-based AgNPs has got much attention in the recent years. The current article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present the pertinent role of plant terpenoids in the biosynthesis of AgNPs, as capping and reducing agents for development of uniform size and shape AgNPs. An emphasis on the important role of FTIR in the identification and elucidation of major functional groups in terpenoids for AgNPs synthesis has also been reviewed in this manuscript. It was found that no such article is available that has discussed the role of plant terpenoids in the green synthesis of AgNPs.
Journal of Nanomaterials | 2017
Ayesha Naveed Ul Haq; Akhtar Nadhman; Ikram Ullah; Ghulam Mustafa; Masoom Yasinzai; Imran Khan
Human’s quest for innovation, finding solutions of problems, and upgrading the industrial yield with energy efficient and cost-effective materials has opened the avenues of nanotechnology. Among a variety of nanoparticles, zinc oxide nanoparticles (ZnO) have advantages because of the extraordinary physical and chemical properties. It is one of the cheap materials in cosmetic industry, nanofertilizers, and electrical devices and also a suitable agent for bioimaging and targeted drug and gene delivery and an excellent sensor for detecting ecological pollutants and environmental remediation. Despite inherent toxicity of nanoparticles, synthetic routes are making use of large amount of chemical and stringent reactions conditions that are contributing as environmental contaminants in the form of high energy consumption, heat generation, water consumption, and chemical waste. Further, it is also adding to the innate toxicity of nanoparticles (NPs) that is either entirely ignored or poorly investigated. The current review illustrates a comparison between pollutants and hazards spawned from chemical, physical, and biological methods used for the synthesis of ZnO. Further, the emphasis is on devising eco-friendly techniques for the synthesis of ZnO especially biological methods which are comparatively less hazardous and need to be optimized by controlling the reaction conditions in order to get desired yield and characteristics.
Journal of Materials Chemistry B | 2016
Muhammad Farhan Sohail; Ibrahim Javed; Syed Zajif Hussain; Shoaib Sarwar; Sohail Akhtar; Akhtar Nadhman; Salma Batool; Nadeem Irfan Bukhari; Rahman Shah Zaib Saleem; Irshad Hussain; Gul Shahnaz
Folate grafted and thiolated chitosan was synthesized and wrapped on the surface of mixed phosphatidylcholine based nanoliposomes (NLs) to improve the oral absorption and targeted pharmacological activity of anti-cancer drugs against breast cancer. In this study, a chitosan derived thiomer, having intrinsic properties of P-glycoprotein (P-gp) efflux pump inhibition, mucoadhesion and controlled drug release at a target site, was exploited to improve the performance of docetaxel (DTX) loaded NLs for better oral pharmacokinetics, targeted anti-cancer activity, liposomal stability and the physical characteristics of NLs. Thiomer enveloped nanoliposomes (ENLs) and bare nanoliposomes (NLs) were synthesized with the ingredient ratio pre-determined via Response Surface Methodology (RSM) plots by Design Expert® software. ENLs and NLs were thoroughly characterized for their surface chemistry, particle size, zeta potential, PDI, encapsulation efficiency, stability and release profile. ENLs were spherical in shape with a particle size of 328.5 ± 30 nm, a positive zeta potential of 18.81 ± 2.45 and a high encapsulation efficiency of 83% for DTX. Controlled release of DTX from formulations was observed for over 72 h for each formulation. The presence of thiol groups at the surface of the ENLs resulted in higher swelling and in situ gelling properties compared to the corresponding NLs. Furthermore, ENL/mucin mixtures showed a time dependent increase in viscosity for up to 12 h, leading to a 19.07-fold increased viscosity. Ex vivo permeation and P-glycoprotein inhibiting properties, studied in rats small intestine, showed a 9.6-fold higher permeation and 13-fold enhancement of DTX in the presence of ENLs. In vitro cytotoxicity studies indicated that the ENLs can efficiently kill MD-MB-231 breast cancer cells with 200 fold lower IC50 values than DTX alone as a positive control. The pharmacokinetic study revealed that the ENLs significantly improved the oral bioavailability of DTX i.e. up to 13.6 fold as compared to an aqueous dispersion of DTX. Therefore, these enveloped hybrid nanoliposomes (ENLs) have the potential to be developed as useful nanocarriers for efficient oral delivery and breast cancer management using DTX.
International Journal of Pharmaceutics | 2018
Saima Aftab; Afzal Shah; Akhtar Nadhman; Sevinc Kurbanoglu; Sibel A. Ozkan; Dionysios D. Dionysiou; Shyam S. Shukla; Tejraj M. Aminabhavi
Various types of nanoparticles (NPs) have been used in delivering anticancer drugs to the site of action. This area has become more attractive in recent years due to optimal size and negligible undesirable side effects caused by the NPs. The focus of this review is to explore various types of NPs and their surface/chemical modifications as well as attachment of targeting ligands for tuning their properties in order to facilitate targeted delivery to the cancer sites in a rate-controlled manner. Heme compatibility, biodistribution, longer circulation time, hydrophilic lipophilic balance for high bioavailability, prevention of drug degradation and leakage are important in transporting drugs to the targeted cancer sites. The review discusses advantages of polymeric, magnetic, gold, and mesoporous silica NPs in delivering chemotherapeutic agents over the conventional dosage formulations along with their shortcomings/risks and possible solutions/alternatives.
International Journal of Nanomedicine | 2015
Akhtar Nadhman; Samina Nazir; Malik Ihsanullah Khan; Attiya Ayub; Bakhtiar Muhammad; Momin Khan; Dilawar Farhan Shams; Masoom Yasinzai
Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment.
International Journal of Nanomedicine | 2016
Akhtar Nadhman; Malik Ihsanullah Khan; Samina Nazir; Momin Khan; Gul Shahnaz; Abida Raza; Dilawar Farhan Shams; Masoom Yasinzai
Lipid and protein oxidation are well-known manifestations of free radical activity and oxidative stress. The current study investigated extermination of Leishmania tropica promastigotes induced by lipid and protein oxidation with reactive oxygen species produced by PEGylated metal-based nanoparticles. The synthesized photodynamic therapy-based doped and nondoped zinc oxide nanoparticles were activated in daylight that produced reactive oxygen species in the immediate environment. Lipid and protein oxidation did not occur in dark. The major lipid peroxidation derivatives comprised of conjugated dienes, lipid hydroperoxides, and malondialdehyde whereas water, ethane, methanol, and ethanol were found as the end products. Proteins were oxidized to carbonyls, hydroperoxides, and thiol degrading products. Interestingly, lipid hydroperoxides were produced by more than twofold of the protein hydroperoxides, indicating higher degradation of lipids compared to proteins. The in vitro evidence represented a significant contribution of the involvement of both lipid and protein oxidation in the annihilated antipromastigote effect of nanoparticles.