Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akihide Koyama is active.

Publication


Featured researches published by Akihide Koyama.


Annals of Neurology | 2008

TDP-43 mutation in familial amyotrophic lateral sclerosis.

Akio Yokoseki; Atsushi Shiga; Chun-Feng Tan; Asako Tagawa; Hiroyuki Kaneko; Akihide Koyama; Hiroto Eguchi; Akira Tsujino; Takeshi Ikeuchi; Akiyoshi Kakita; Koichi Okamoto; Masatoyo Nishizawa; Hitoshi Takahashi; Osamu Onodera

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. Accumulating evidence has shown that 43kDa TAR‐DNA–binding protein (TDP‐43) is the disease protein in ALS and frontotemporal lobar degeneration. We previously reported a familial ALS with Bumina bodies and TDP‐43‐positive skein‐like inclusions in the lower motor neurons; these findings are indistinguishable from those of sporadic ALS. In three affected individuals in two generations of one family, we found a single base‐pair change from A to G at position 1028 in TDP‐43, which resulted in a Gln‐to‐Arg substitution at position 343. Our findings provide a new insight into the molecular pathogenesis of ALS. Ann Neurol 2008;63:538–542


The New England Journal of Medicine | 2009

Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease

Kenju Hara; Atsushi Shiga; Toshio Fukutake; Hiroaki Nozaki; Akinori Miyashita; Akio Yokoseki; Hirotoshi Kawata; Akihide Koyama; Kunimasa Arima; Toshiaki Takahashi; Mari Ikeda; Hiroshi Shiota; Masato Tamura; Yutaka Shimoe; Mikio Hirayama; Takayo Arisato; Sohei Yanagawa; Akira Tanaka; Imaharu Nakano; Shu-ichi Ikeda; Yutaka Yoshida; Tadashi Yamamoto; Takeshi Ikeuchi; Ryozo Kuwano; Masatoyo Nishizawa; Shoji Tsuji; Osamu Onodera

BACKGROUND The genetic cause of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), which is characterized by ischemic, nonhypertensive, cerebral small-vessel disease with associated alopecia and spondylosis, is unclear. METHODS In five families with CARASIL, we carried out linkage analysis, fine mapping of the region implicated in the disease, and sequence analysis of a candidate gene. We also conducted functional analysis of wild-type and mutant gene products and measured the signaling by members of the transforming growth factor beta (TGF-beta) family and gene and protein expression in the small arteries in the cerebrum of two patients with CARASIL. RESULTS We found linkage of the disease to the 2.4-Mb region on chromosome 10q, which contains the HtrA serine protease 1 (HTRA1) gene. HTRA1 is a serine protease that represses signaling by TGF-beta family members. Sequence analysis revealed two nonsense mutations and two missense mutations in HTRA1. The missense mutations and one of the nonsense mutations resulted in protein products that had comparatively low levels of protease activity and did not repress signaling by the TGF-beta family. The other nonsense mutation resulted in the loss of HTRA1 protein by nonsense-mediated decay of messenger RNA. Immunohistochemical analysis of the cerebral small arteries in affected persons showed increased expression of the extra domain-A region of fibronectin and versican in the thickened tunica intima and of TGF-beta1 in the tunica media. CONCLUSIONS CARASIL is associated with mutations in the HTRA1 gene. Our findings indicate a link between repressed inhibition of signaling by the TGF-beta family and ischemic cerebral small-vessel disease, alopecia, and spondylosis.


Human Molecular Genetics | 2011

Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-β1 via cleavage of proTGF-β1

Atsushi Shiga; Hiroaki Nozaki; Akio Yokoseki; Megumi Nihonmatsu; Hirotoshi Kawata; Taisuke Kato; Akihide Koyama; Kunimasa Arima; Mari Ikeda; Shinichi Katada; Yasuko Toyoshima; Hitoshi Takahashi; Akira Tanaka; Imaharu Nakano; Takeshi Ikeuchi; Masatoyo Nishizawa; Osamu Onodera

Cerebral small-vessel disease is a common disorder in elderly populations; however, its molecular basis is not well understood. We recently demonstrated that mutations in the high-temperature requirement A (HTRA) serine peptidase 1 (HTRA1) gene cause a hereditary cerebral small-vessel disease, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). HTRA1 belongs to the HTRA protein family, whose members have dual activities as chaperones and serine proteases and also repress transforming growth factor-β (TGF-β) family signaling. We demonstrated that CARASIL-associated mutant HTRA1s decrease protease activity and fail to decrease TGF-β family signaling. However, the precise molecular mechanism for decreasing the signaling remains unknown. Here we show that increased expression of ED-A fibronectin is limited to cerebral small arteries and is not observed in coronary, renal arterial or aortic walls in patients with CARASIL. Using a cell-mixing assay, we found that HTRA1 decreases TGF-β1 signaling triggered by proTGF-β1 in the intracellular space. HTRA1 binds and cleaves the pro-domain of proTGF-β1 in the endoplasmic reticulum (ER), and cleaved proTGF-β1 is degraded by ER-associated degradation. Consequently, the amount of mature TGF-β1 is reduced. These results establish a novel mechanism for regulating the amount of TGF-β1, specifically, the intracellular cleavage of proTGF-β1 in the ER.


Nucleic Acids Research | 2007

Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3′-phosphate and 3′-phosphoglycolate ends

Tetsuya Takahashi; Masayoshi Tada; Shuichi Igarashi; Akihide Koyama; Hidetoshi Date; Akio Yokoseki; Atsushi Shiga; Yutaka Yoshida; Shoji Tsuji; Nishizawa M; Osamu Onodera

Aprataxin is the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia type 1 (EAOH/AOA1), the clinical symptoms of which are predominantly neurological. Although aprataxin has been suggested to be related to DNA single-strand break repair (SSBR), the physiological function of aprataxin remains to be elucidated. DNA single-strand breaks (SSBs) continually produced by endogenous reactive oxygen species or exogenous genotoxic agents, typically possess damaged 3′-ends including 3′-phosphate, 3′-phosphoglycolate, or 3′-α, β-unsaturated aldehyde ends. These damaged 3′-ends should be restored to 3′-hydroxyl ends for subsequent repair processes. Here we demonstrate by in vitro assay that recombinant human aprataxin specifically removes 3′-phosphoglycolate and 3′-phosphate ends at DNA 3′-ends, but not 3′-α, β-unsaturated aldehyde ends, and can act with DNA polymerase β and DNA ligase III to repair SSBs with these damaged 3′-ends. Furthermore, disease-associated mutant forms of aprataxin lack this removal activity. The findings indicate that aprataxin has an important role in SSBR, that is, it removes blocking molecules from 3′-ends, and that the accumulation of unrepaired SSBs with damaged 3′-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons.


Neurology | 2014

Haploinsufficiency of CSF-1R and clinicopathologic characterization in patients with HDLS

Takuya Konno; Mari Tada; Akihide Koyama; Hiroaki Nozaki; Yasuo Harigaya; J. Nishimiya; Akiko Matsunaga; Nobuaki Yoshikura; Kenji Ishihara; Musashi Arakawa; A. Isami; Kenichi Okazaki; Hideaki Yokoo; Kyoko Itoh; Makoto Yoneda; Mitsuru Kawamura; Takashi Inuzuka; Hitoshi Takahashi; Masatoyo Nishizawa; Osamu Onodera; Akiyoshi Kakita; Takeshi Ikeuchi

Objective: To clarify the genetic, clinicopathologic, and neuroimaging characteristics of patients with hereditary diffuse leukoencephalopathy with spheroids (HDLS) with the colony stimulating factor 1 receptor (CSF-1R) mutation. Methods: We performed molecular genetic analysis of CSF-1R in patients with HDLS. Detailed clinical and neuroimaging findings were retrospectively investigated. Five patients were examined neuropathologically. Results: We found 6 different CSF-1R mutations in 7 index patients from unrelated Japanese families. The CSF-1R mutations included 3 novel mutations and 1 known missense mutation at evolutionarily conserved amino acids, and 1 novel splice-site mutation. We identified a novel frameshift mutation. Reverse transcription PCR analysis revealed that the frameshift mutation causes nonsense-mediated mRNA decay by generating a premature stop codon, suggesting that haploinsufficiency of CSF-1R is sufficient to cause HDLS. Western blot analysis revealed that the expression level of CSF-1R in the brain from the patients was lower than from control subjects. The characteristic MRI findings were the involvement of the white matter and thinning of the corpus callosum with signal alteration, and sequential analysis revealed that the white matter lesions and cerebral atrophy relentlessly progressed with disease duration. Spotty calcifications in the white matter were frequently observed by CT. Neuropathologic analysis revealed that microglia in the brains of the patients demonstrated distinct morphology and distribution. Conclusions: These findings suggest that patients with HDLS, irrespective of mutation type in CSF-1R, show characteristic clinical and neuroimaging features, and that perturbation of CSF-1R signaling by haploinsufficiency may play a role in microglial dysfunction leading to the pathogenesis of HDLS.


Human Molecular Genetics | 2013

Decreased number of Gemini of coiled bodies and U12 snRNA level in amyotrophic lateral sclerosis

Tomohiko Ishihara; Yuko Ariizumi; Atsushi Shiga; Taisuke Kato; Chun-Feng Tan; Tatsuya Sato; Yukari Miki; Mariko Yokoo; Takeshi Fujino; Akihide Koyama; Akio Yokoseki; Masatoyo Nishizawa; Akiyoshi Kakita; Hitoshi Takahashi; Osamu Onodera

Disappearance of TAR-DNA-binding protein 43 kDa (TDP-43) from the nucleus contributes to the pathogenesis of amyotrophic lateral sclerosis (ALS), but the nuclear function of TDP-43 is not yet fully understood. TDP-43 associates with nuclear bodies including Gemini of coiled bodies (GEMs). GEMs contribute to the biogenesis of uridine-rich small nuclear RNA (U snRNA), a component of splicing machinery. The number of GEMs and a subset of U snRNAs decrease in spinal muscular atrophy, a lower motor neuron disease, suggesting that alteration of U snRNAs may also underlie the molecular pathogenesis of ALS. Here, we investigated the number of GEMs and U11/12-type small nuclear ribonucleoproteins (snRNP) by immunohistochemistry and the level of U snRNAs using real-time quantitative RT-PCR in ALS tissues. GEMs decreased in both TDP-43-depleted HeLa cells and spinal motor neurons in ALS patients. Levels of several U snRNAs decreased in TDP-43-depleted SH-SY5Y and U87-MG cells. The level of U12 snRNA was decreased in tissues affected by ALS (spinal cord, motor cortex and thalamus) but not in tissues unaffected by ALS (cerebellum, kidney and muscle). Immunohistochemical analysis revealed the decrease in U11/12-type snRNP in spinal motor neurons of ALS patients. These findings suggest that loss of TDP-43 function decreases the number of GEMs, which is followed by a disturbance of pre-mRNA splicing by the U11/U12 spliceosome in tissues affected by ALS.


Neurology | 2016

Distinct molecular mechanisms of HTRA1 mutants in manifesting heterozygotes with CARASIL.

Hiroaki Nozaki; Taisuke Kato; Megumi Nihonmatsu; Yohei Saito; Ikuko Mizuta; Tomoko Noda; Ryoko Koike; Kazuhide Miyazaki; Muichi Kaito; Shoichi Ito; Masahiro Makino; Akihide Koyama; Atsushi Shiga; Masahiro Uemura; Yumi Sekine; Ayuka Murakami; Suzuko Moritani; Kenju Hara; Akio Yokoseki; Ryozo Kuwano; Naoto Endo; Takeshi Momotsu; Mari Yoshida; Masatoyo Nishizawa; Toshiki Mizuno; Osamu Onodera

Objective: To elucidate the molecular mechanism of mutant HTRA1-dependent cerebral small vessel disease in heterozygous individuals. Methods: We recruited 113 unrelated index patients with clinically diagnosed cerebral small vessel disease. The coding sequences of the HTRA1 gene were analyzed. We evaluated HTRA1 protease activities using casein assays and oligomeric HTRA1 formation using gel filtration chromatography. Results: We found 4 heterozygous missense mutations in the HTRA1 gene (p.G283E, p.P285L, p.R302Q, and p.T319I) in 6 patients from 113 unrelated index patients and in 2 siblings in 2 unrelated families with p.R302Q. The mean age at cognitive impairment onset was 51.1 years. Spondylosis deformans was observed in all cases, whereas alopecia was observed in 3 cases; an autopsied case with p.G283E showed arteriopathy in their cerebral small arteries. These mutant HTRA1s showed markedly decreased protease activities and inhibited wild-type HTRA1 activity, whereas 2 of 3 mutant HTRA1s reported in cerebral autosomal-recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) (A252T and V297M) did not inhibit wild-type HTRA1 activity. Wild-type HTRA1 forms trimers; however, G283E and T319I HTRA1, observed in manifesting heterozygotes, did not form trimers. P285L and R302Q HTRA1s formed trimers, but their mutations were located in domains that are important for trimer-associated HTRA1 activation; in contrast, A252T and V297M HTRA1s, which have been observed in CARASIL, also formed trimers but had mutations outside the domains important for trimer-associated HTRA1 activation. Conclusions: The mutant HTRA1s observed in manifesting heterozygotes might result in an impaired HTRA1 activation cascade of HTRA1 or be unable to form stable trimers.


Nucleic Acids Research | 2016

Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43.

Akihide Koyama; Akihiro Sugai; Taisuke Kato; Tomohiko Ishihara; Atsushi Shiga; Yasuko Toyoshima; Misaki Koyama; Takuya Konno; Sachiko Hirokawa; Akio Yokoseki; Masatoyo Nishizawa; Akiyoshi Kakita; Hitoshi Takahashi; Osamu Onodera

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder. In motor neurons of ALS, TAR DNA binding protein-43 (TDP-43), a nuclear protein encoded by TARDBP, is absent from the nucleus and forms cytoplasmic inclusions. TDP-43 auto-regulates the amount by regulating the TARDBP mRNA, which has three polyadenylation signals (PASs) and three additional alternative introns within the last exon. However, it is still unclear how the autoregulatory mechanism works and how the status of autoregulation in ALS motor neurons without nuclear TDP-43 is. Here we show that TDP-43 inhibits the selection of the most proximal PAS and induces splicing of multiple alternative introns in TARDBP mRNA to decrease the amount of cytoplasmic TARDBP mRNA by nonsense-mediated mRNA decay. When TDP-43 is depleted, the TARDBP mRNA uses the most proximal PAS and is increased in the cytoplasm. Finally, we have demonstrated that in ALS motor neurons—especially neurons with mislocalized TDP-43—the amount of TARDBP mRNA is increased in the cytoplasm. Our observations indicate that nuclear TDP-43 contributes to the autoregulation and suggests that the absence of nuclear TDP-43 induces an abnormal autoregulation and increases the amount of TARDBP mRNA. The vicious cycle might accelerate the disease progression of ALS.


Brain | 2011

Genotype–phenotype correlations in early onset ataxia with ocular motor apraxia and hypoalbuminaemia

Akio Yokoseki; Tomohiko Ishihara; Akihide Koyama; Atsushi Shiga; Mitsunori Yamada; Chieko Suzuki; Yoshiki Sekijima; Kyoko Maruta; Miyuki Tsuchiya; Hidetoshi Date; Tatsuya Sato; Masayoshi Tada; Takeshi Ikeuchi; Shoji Tsuji; Masatoyo Nishizawa; Osamu Onodera

Early onset ataxia with ocular motor apraxia and hypoalbuminaemia/ataxia-oculomotor apraxia 1 is a recessively inherited ataxia caused by mutations in the aprataxin gene. We previously reported that patients with frameshift mutations exhibit a more severe phenotype than those with missense mutations. However, reports on genotype-phenotype correlation in early onset ataxia with ocular motor apraxia and hypoalbuminaemia are controversial. To clarify this issue, we studied 58 patients from 39 Japanese families, including 40 patients homozygous for c.689_690insT and nine patients homozygous or compound heterozygous for p.Pro206Leu or p.Val263Gly mutations who were compared with regard to clinical phenotype. We performed Kaplan-Meier analysis and log-rank tests for the ages of onset of gait disturbance and the inability to walk without assistance. The cumulative rate of gait disturbance was lower among patients with p.Pro206Leu or p.Val263Gly mutations than among those homozygous for the c.689_690insT mutation (P=0.001). The cumulative rate of inability to walk without assistance was higher in patients homozygous for the c.689_690insT mutation than in those with p.Pro206Leu or p.Val263Gly mutations (P=0.004). Using a Cox proportional hazards model, we found that the homozygous c.689_690insT mutation was associated with an increased risk for onset of gait disturbance (adjusted hazard ratio: 6.60) and for the inability to walk without assistance (adjusted hazard ratio: 2.99). All patients homozygous for the c.689_690insT mutation presented ocular motor apraxia at <15 years of age. Approximately half the patients homozygous for the c.689_690insT mutation developed cognitive impairment. In contrast, in the patients with p.Pro206Leu or p.Val263Gly mutations, only ∼50% of the patients exhibited ocular motor apraxia and they never developed cognitive impairment. The stepwise multivariate regression analysis using sex, age and the number of c.689_690insT alleles as independent variables revealed that the number of c.689_690insT alleles was independently and negatively correlated with median motor nerve conduction velocities, ulnar motor nerve conduction velocities and values of serum albumin. In the patient with c.[689_690insT]+[840delT], p.[Pro206Leu]+[Pro206Leu] and p.[Pro206Leu]+[Val263Gly] mutations, aprataxin proteins were not detected by an antibody to the N-terminus of aprataxin. Furthermore Pro206Leu and Val263Gly aprataxin proteins are unstable. However, the amount of the 689_690insT aprataxin messenger RNA was also decreased, resulting in more dramatic reduction in the amount of aprataxin protein from the c.689_690insT allele. In conclusion, patients with early onset ataxia with ocular motor apraxia and hypoalbuminaemia homozygous for the c.689_690insT mutation show a more severe phenotype than those with a p.Pro206Leu or p.Val263Gly mutation.


Biochemical and Biophysical Research Communications | 2015

ApoE-isoform-dependent cellular uptake of amyloid-β is mediated by lipoprotein receptor LR11/SorLA

Ryuji Yajima; Takayoshi Tokutake; Akihide Koyama; Kensaku Kasuga; Toshiyuki Tezuka; Masatoyo Nishizawa; Takeshi Ikeuchi

The formation of senile plaques composed of β-amyloid (Aβ) in the brain is likely the initial event in Alzheimers disease (AD). Possession of the APOE ε4 allele, the strong genetic factor for AD, facilitates the Aβ deposition from the presymptomatic stage of AD in a gene-dosage-dependent manner. However, the precise mechanism by which apoE isoforms differentially induce the AD pathology is largely unknown. LR11/SorLA is a type I membrane protein that functions as the neuronal lipoprotein endocytic receptor of apoE and the sorting receptor of the amyloid precursor protein (APP) to regulate amyloidogenesis. Recently, LR11/SorLA has been reported to be involved in the lysosomal targeting of extracellular amyloid-β (Aβ) through the binding of Aβ to the vacuolar protein sorting 10 (VPS10) protein domain of LR11/SorLA. Here, we attempted to examine the human-apoE-isoform-dependent effect on the cellular uptake of Aβ through the formation of a complex between an apoE isoform and LR11/SorLA. Cell culture experiments using Neuro2a cells revealed that the cellular uptake of secreted apoE3 and apoE4 was enhanced by the overexpression of LR11/SorLA. In contrast, the cellular uptake of apoE2 was not affected by the expression of LR11/SorLA. Co-immunoprecipitation assay revealed that apoE-isoform-dependent differences were observed in the formation of an apoE-LR11 complex (apoE4>apoE3>apoE2). ApoE-isoform-dependent differences in cellular uptake of FAM-labeled Aβ were further investigated by coculture assay in which donor cells secrete one of the apoE isoforms and recipient cells express FL-LR11. The cellular uptake of extracellular Aβ into the recipient cells was most prominently accentuated when cocultured with the donor cells secreting apoE4 in the medium, followed by apoE3 and apoE2. Taken together, our results provide evidence for the mechanism whereby human-apoE-isoform-dependent differences modulate the cellular uptake of Aβ mediated by LR11/SorLA.

Collaboration


Dive into the Akihide Koyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge