Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akihiko Ishida is active.

Publication


Featured researches published by Akihiko Ishida.


Micromachines | 2016

Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis

Lori Shayne Alamo Busa; Saeed Mohammadi; Masatoshi Maeki; Akihiko Ishida; Hirofumi Tani; Manabu Tokeshi

Food and water contamination cause safety and health concerns to both animals and humans. Conventional methods for monitoring food and water contamination are often laborious and require highly skilled technicians to perform the measurements, making the quest for developing simpler and cost-effective techniques for rapid monitoring incessant. Since the pioneering works of Whitesides’ group from 2007, interest has been strong in the development and application of microfluidic paper-based analytical devices (μPADs) for food and water analysis, which allow easy, rapid and cost-effective point-of-need screening of the targets. This paper reviews recently reported μPADs that incorporate different detection methods such as colorimetric, electrochemical, fluorescence, chemiluminescence, and electrochemiluminescence techniques for food and water analysis.


RSC Advances | 2015

A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure

Masatoshi Maeki; Tatsuyoshi Saito; Yusuke Sato; Takao Yasui; Noritada Kaji; Akihiko Ishida; Hirofumi Tani; Yoshinobu Baba; Hideyoshi Harashima; Manabu Tokeshi

Formation behavior of lipid nanoparticles (LNPs) in microfluidic devices with a staggered herringbone micromixer (SHM) structure was investigated. The fundamental role for SHMs in LNP formation was demonstrated by determining such factors as the limiting SHM cycle numbers and the effect of flow rate. The SHM cycle numbers and the position of the first SHM were as significant as factors as the flow rate condition for producing the small-size LNPs.


Journal of Chromatography A | 2008

Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsiloxane)

Akihiko Ishida; Masamichi Natsume; Tamio Kamidate

A microchip pressure-driven liquid chromatography (LC) with a packed column and an electrochemical flow cell has been developed by using polystyrene (PS) and poly(dimethylsiloxane) (PDMS). The cylindrical separation column with packed octadecyl silica particles was fabricated in the PS substrate. The three electrode system (working, reference, and counter electrode) for amperometric detection was fabricated onto the PS substrate, using the Au deposition, photolithography, and chemical etching. The detector flow cell was formed by sealing the electrode system with a PDMS chip containing a channel. In this flow cell, the effect of working electrode width (in the direction of flow) on chromatographic parameters, such as peak width and peak resolution were studied in electrode width ranging 50-5,000 microm. The effect of electrode width on sensitivity (current intensity, current density, and S/N ratio) was also examined. The sensitivity was discussed by simulating the concentration profile generated around the working electrode. The effects of the column packing size and the column size on the separation efficiency were examined. In this study, a good separation of three catechins was successfully achieved and the detection limits for (+)-catechin, epicatechin, and epigallocatechin gallate were 350, 450, and 160 nM, respectively.


Analytical and Bioanalytical Chemistry | 2008

Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation.

Akihiko Ishida; Yasuko Yamada; Tamio Kamidate

In hygiene management, recently there has been a significant need for screening methods for microbial contamination by visual observation or with commonly used colorimetric apparatus. The amount of adenosine triphosphate (ATP) can serve as the index of a microorganism. This paper describes the development of a colorimetric method for the assay of ATP, using enzymatic cycling and Fe(III)-xylenol orange (XO) complex formation. The color characteristics of the Fe(III)-XO complexes, which show a distinct color change from yellow to purple, assist the visual observation in screening work. In this method, a trace amount of ATP was converted to pyruvate, which was further amplified exponentially with coupled enzymatic reactions. Eventually, pyruvate was converted to the Fe(III)-XO complexes through pyruvate oxidase reaction and Fe(II) oxidation. As the assay result, yellow or purple color was observed: A yellow color indicates that the ATP concentration is lower than the criterion of the test, and a purple color indicates that the ATP concentration is higher than the criterion. The method was applied to the assay of ATP extracted from Escherichia coli cells added to cow milk.


Analyst | 2016

Image analysis for a microfluidic paper-based analytical device using the CIE L*a*b* color system

Takeshi Komatsu; Saeed Mohammadi; Lori Shayne Alamo Busa; Masatoshi Maeki; Akihiko Ishida; Hirofumi Tani; Manabu Tokeshi

The combination of a microfluidic paper-based analytical device (μPAD) and digital image analysis is widely used for quantitative analysis with μPADs because of its easy and simple operation. Herein, we have demonstrated a quantitative analysis based on multiple color changes on a μPAD. The CIE L*a*b* color system was employed to analyse the digital images obtained with the μPAD. We made pH measurements using a universal pH-indicator showing multiple color changes for various pH values of aqueous test solutions. The detectable pH range of this method was wider than the typical grayscale-based image analysis, and we succeeded in the measurements for a wide pH range of 2-9.


Analytical Chemistry | 2015

Fluorescence Polarization Measurement System Using a Liquid Crystal Layer and an Image Sensor

Osamu Wakao; Yusaku Fujii; Masatoshi Maeki; Akihiko Ishida; Hirofumi Tani; Akihide Hibara; Manabu Tokeshi

The detection system which enables simultaneous fluorescence polarization (FP) measurement of multiple samples was proposed and proven by a proof-of-concept experiment on the viscosity dependence of FP of fluorescein sample in water-ethylene glycol solution and another experiment on the FP immunoassay of prostaglandin E2 sample. The measurement principle of FP is based on the synchronization between the orientation of the liquid crystal molecules and the sampling frequency of a CCD. This report is the first description of the simultaneous FP measurement of multiple samples. This system has a great potential for equipment miniaturization and price reduction as well as providing simultaneous FP measurement of multiple samples.


CrystEngComm | 2016

A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space

Masatoshi Maeki; Shohei Yamazaki; Ashtamurthy S. Pawate; Akihiko Ishida; Hirofumi Tani; Kenichi Yamashita; Masakazu Sugishima; Keiichi Watanabe; Manabu Tokeshi; Paul J. A. Kenis; Masaya Miyazaki

Protein crystallization and subsequent X-ray diffraction analysis of the three-dimensional structure are necessary for elucidation of the biological functions of proteins and effective rational drug design. Therefore, controlling protein crystallization is important to obtain high resolution X-ray diffraction data. Here, a simple microfluidic method using chips with 10 and 50 μm high crystallization chambers to selectively form suitable single protein crystals for X-ray analysis is demonstrated. As proof of concept, three different types of proteins: lysozyme, glucokinase from Pseudoalteromonas sp. AS-131 (PsGK), and NADPH-cytochrome P450 oxidoreductase–heme oxygenase complex were crystallized. We demonstrate that the crystal growth orientation depends on the height of the crystallization chamber regardless of the protein type. Our results suggest that the confined micro space induces the protein molecules to adhere to a specific crystal face and affects the growth kinetics of each crystal face. The present microfluidic-based protein crystallization method can reform a suitable single protein crystal for X-ray analysis from aggregates of needle-shaped protein crystals.


Analytical Sciences | 2015

A Portable Liquid Chromatograph with a Battery-operated Compact Electroosmotic Pump and a Microfluidic Chip Device with a Reversed Phase Packed Column

Akihiko Ishida; Mitsutaka Fujii; Takehiro Fujimoto; Shunsuke Sasaki; Ichiro Yanagisawa; Hirofumi Tani; Manabu Tokeshi

A compact and lightweight liquid chromatography system is presented with overall dimensions of 26 cm width × 18 cm length × 21 cm height and weight of 2 kg. This system comprises a battery-operated compact electroosmotic pump, a manual injector, a microfluidic chip device containing a packed column and an electrochemical detector, and a USB bus-powered potentiostat. The pumping system was designed for microfluidic-based reversed-phase liquid chromatography in which an electroosmotically generated water stream pushes the mobile phase via a diaphragm for the output. The flow rate ranged from 0 to 10 μL/min and had a high degree of precision. The pumping system operated continuously for over 24 h with dry batteries. The column formed in the microfluidic device was packed with 3-μm ODS particles with a length of 30 mm and a diameter of 0.8 mm. The results presented herein demonstrate the performance of the pumping system and the column using alkylphenols, catecholamine, catechin, and amino acids.


PLOS ONE | 2017

Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers

Masatoshi Maeki; Yuka Fujishima; Yusuke Sato; Takao Yasui; Noritada Kaji; Akihiko Ishida; Hirofumi Tani; Yoshinobu Baba; Hideyoshi Harashima; Manabu Tokeshi

Lipid nanoparticles (LNPs) or liposomes are the most widely used drug carriers for nanomedicines. The size of LNPs is one of the essential factors affecting drug delivery efficiency and therapeutic efficiency. Here, we demonstrated the effect of lipid concentration and mixing performance on the LNP size using microfluidic devices with the aim of understanding the LNP formation mechanism and controlling the LNP size precisely. We fabricated microfluidic devices with different depths, 11 μm and 31 μm, of their chaotic micromixer structures. According to the LNP formation behavior results, by using a low concentration of the lipid solution and the microfluidic device equipped with the 31 μm chaotic mixer structures, we were able to produce the smallest-sized LNPs yet with a narrow particle size distribution. We also evaluated the mixing rate of the microfluidic devices using a laser scanning confocal microscopy and we estimated the critical ethanol concentration for controlling the LNP size. The critical ethanol concentration range was estimated to be 60–80% ethanol. Ten nanometer-sized tuning of LNPs was achieved for the optimum residence time at the critical concentration using the microfluidic devices with chaotic mixer structures. The residence times at the critical concentration necessary to control the LNP size were 10, 15–25, and 50 ms time-scales for 30, 40, and 50 nm-sized LNPs, respectively. Finally, we proposed the LNP formation mechanism based on the determined LNP formation behavior and the critical ethanol concentration. The precise size-controlled LNPs produced by the microfluidic devices are expected to become carriers for next generation nanomedicines and they will lead to new and effective approaches for cancer treatment.


Review of Scientific Instruments | 2018

A compact fluorescence polarization analyzer with high-transmittance liquid crystal layer

Osamu Wakao; Ken Satou; Ayano Nakamura; Ken Sumiyoshi; Masanori Shirokawa; Chikaaki Mizokuchi; Kunihiro Shiota; Masatoshi Maeki; Akihiko Ishida; Hirofumi Tani; Koji Shigemura; Akihide Hibara; Manabu Tokeshi

Fluorescence polarization (FP) offers easy operation and rapid processing, making it implementable in molecular interaction analysis. Previously we have developed a unique FP measurement system using a liquid crystal (LC) layer and an image sensor. The system is based on a principle of synchronized detection between the switching rate of the LC layer and the sampling rate of the CCD. The FP system realized simultaneous multiple sample detection; however, the measurement precision was lower than that of the conventional FP apparatus. The main drawbacks were low light transmittance of the LC layer and insufficient synchronization between the LC layer and CCD. In this paper, we developed a new FP analyzer based on LC-CCD synchronization detection. By using a newly designed LC with high transmittance and improving synchronization, the performance of the system has been dramatically improved. Additionally, we reduced the cost by using an inexpensive CCD and an LED as the excitation source. Simultaneous FP immunoassay of multiple samples of prostaglandin E2 was performed. The error rate of the FP system is reduced from 16.9% to 3.9%, as comparable to the commercial conventional FP system.

Collaboration


Dive into the Akihiko Ishida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge