Akihiro Isomura
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akihiro Isomura.
Science | 2013
Itaru Imayoshi; Akihiro Isomura; Yukiko Harima; Kyogo Kawaguchi; Hiroshi Kori; Hitoshi Miyachi; Takahiro K. Fujiwara; Fumiyoshi Ishidate; Ryoichiro Kageyama
Oscillation Stabilizes the Progenitor State Transcription factors regulate fate choice between different neural lineages, but the same transcription factors are also expressed in neural progenitor cells. Imayoshi et al. (p. 1203, published online 31 October) analyzed the details of expression of several transcription factors in mouse neural cells. In neural progenitor cells, several different transcription factors were expressed in an oscillatory manner, whereas differentiated neurons stably expressed a single lineage-specific factor. During neural development, the differentiated state correlates with sustained expression of a single fate-determination factor. The basic helix-loop-helix transcription factors Ascl1/Mash1, Hes1, and Olig2 regulate fate choice of neurons, astrocytes, and oligodendrocytes, respectively. These same factors are coexpressed by neural progenitor cells. Here, we found by time-lapse imaging that these factors are expressed in an oscillatory manner by mouse neural progenitor cells. In each differentiation lineage, one of the factors becomes dominant. We used optogenetics to control expression of Ascl1 and found that, although sustained Ascl1 expression promotes neuronal fate determination, oscillatory Ascl1 expression maintains proliferating neural progenitor cells. Thus, the multipotent state correlates with oscillatory expression of several fate-determination factors, whereas the differentiated state correlates with sustained expression of a single factor.
Nature Genetics | 2013
Yuki Nakanishi; Hiroshi Seno; Ayumi Fukuoka; Taro Ueo; Yuichi Yamaga; Takahisa Maruno; Naoko Nakanishi; Keitaro Kanda; Hideyuki Komekado; Mayumi Kawada; Akihiro Isomura; Kenji Kawada; Yoshiharu Sakai; Motoko Yanagita; Ryoichiro Kageyama; Yoshiya Kawaguchi; Makoto M. Taketo; Shin Yonehara; Tsutomu Chiba
There is great interest in tumor stem cells (TSCs) as potential therapeutic targets; however, cancer therapies targeting TSCs are limited. A drawback is that TSC markers are often shared by normal stem cells (NSCs); thus, therapies that target these markers may cause severe injury to normal tissues. To identify a potential TSC-specific marker, we focused on doublecortin-like kinase 1 (Dclk1). Dclk1 was reported as a candidate NSC marker in the gut, but recent reports have implicated it as a marker of differentiated cells (for example, Tuft cells). Using lineage-tracing experiments, we show here that Dclk1 does not mark NSCs in the intestine but instead marks TSCs that continuously produce tumor progeny in the polyps of ApcMin/+ mice. Specific ablation of Dclk1-positive TSCs resulted in a marked regression of polyps without apparent damage to the normal intestine. Our data suggest the potential for developing a therapy for colorectal cancer based on targeting Dclk1-positive TSCs.
Genes & Development | 2016
Hiromi Shimojo; Akihiro Isomura; Toshiyuki Ohtsuka; Hiroshi Kori; Hitoshi Miyachi; Ryoichiro Kageyama
Notch signaling regulates tissue morphogenesis through cell-cell interactions. The Notch effectors Hes1 and Hes7 are expressed in an oscillatory manner and regulate developmental processes such as neurogenesis and somitogenesis, respectively. Expression of the mRNA for the mouse Notch ligand Delta-like1 (Dll1) is also oscillatory. However, the dynamics of Dll1 protein expression are controversial, and their functional significance is unknown. Here, we developed a live-imaging system and found that Dll1 protein expression oscillated in neural progenitors and presomitic mesoderm cells. Notably, when Dll1 expression was accelerated or delayed by shortening or elongating the Dll1 gene, Dll1 oscillations became severely dampened or quenched at intermediate levels, as modeled mathematically. Under this condition, Hes1 and Hes7 oscillations were also dampened. In the presomitic mesoderm, steady Dll1 expression led to severe fusion of somites and their derivatives, such as vertebrae and ribs. In the developing brain, steady Dll1 expression inhibited proliferation of neural progenitors and accelerated neurogenesis, whereas optogenetic induction of Dll1 oscillation efficiently maintained neural progenitors. These results indicate that the appropriate timing of Dll1 expression is critical for the oscillatory networks and suggest the functional significance of oscillatory cell-cell interactions in tissue morphogenesis.
Wiley Interdisciplinary Reviews-Developmental Biology | 2012
Ryoichiro Kageyama; Yasutaka Niwa; Akihiro Isomura; Aitor González; Yukiko Harima
A bilateral pair of somites forms periodically by segmentation of the anterior ends of the presomitic mesoderm (PSM). This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic gene expression. Expression of her1 and her7 in zebrafish and Hes7 in mice oscillates by negative feedback, and mathematical models have been used to generate and test hypotheses to aide elucidation of the role of negative feedback in regulating oscillatory expression. her/Hes genes induce oscillatory expression of the Notch ligand deltaC in zebrafish and the Notch modulator Lunatic fringe in mice, which lead to synchronization of oscillatory gene expression between neighboring PSM cells. In the mouse PSM, Hes7 induces coupled oscillations of Notch and Fgf signaling, while Notch and Fgf signaling cooperatively regulate Hes7 oscillation, indicating that Hes7 and Notch and Fgf signaling form the oscillator networks. Notch signaling activates, but Fgf signaling represses, expression of the master regulator for somitogenesis Mesp2, and coupled oscillations in Notch and Fgf signaling dissociate in the anterior PSM, which allows Notch signaling‐induced synchronized cells to express Mesp2 after these cells are freed from Fgf signaling. These results together suggest that Notch signaling defines the prospective somite region, while Fgf signaling regulates the pace of segmentation. It is likely that these oscillator networks constitute the core of the segmentation clock, but it remains to be determined whether as yet unknown oscillators function behind the scenes. WIREs Dev Biol 2012 doi: 10.1002/wdev.46
Development | 2014
Akihiro Isomura; Ryoichiro Kageyama
Biological clocks play key roles in organismal development, homeostasis and function. In recent years, much work has focused on circadian clocks, but emerging studies have highlighted the existence of ultradian oscillators – those with a much shorter periodicity than 24 h. Accumulating evidence, together with recently developed optogenetic approaches, suggests that such ultradian oscillators play important roles during cell fate decisions, and analyzing the functional links between ultradian oscillation and cell fate determination will contribute to a deeper understanding of the design principle of developing embryos. In this Review, we discuss the mechanisms of ultradian oscillatory dynamics and introduce examples of ultradian oscillators in various biological contexts. We also discuss how optogenetic technology has been used to elucidate the biological significance of ultradian oscillations.
FEBS Journal | 2015
Taeko Kobayashi; Yumiko Iwamoto; Kazuhiro Takashima; Akihiro Isomura; Yoichi Kosodo; Koichi Kawakami; Tomoki Nishioka; Kozo Kaibuchi; Ryoichiro Kageyama
Hairy and enhancer of split 1 (Hes1), a basic helix‐loop‐helix transcriptional repressor protein, regulates the maintenance of neural stem/progenitor cells by repressing proneural gene expression via Notch signaling. Previous studies showed that Hes1 expression oscillates in both mouse embryonic stem cells and neural stem cells, and that the oscillation contributes to their potency and differentiation fates. This oscillatory expression depends on the stability of Hes1, which is rapidly degraded by the ubiquitin/proteasome pathway. However, the detailed molecular mechanisms governing Hes1 stability remain unknown. We analyzed Hes1‐interacting deubiquitinases purified from mouse embryonic stem cells using an Hes1‐specific antibody, and identified the ubiquitin‐specific protease 27x (Usp27x) as a new regulator of Hes1. We found that Hes1 was deubiquitinated and stabilized by Usp27x and its homologs ubiquitin‐specific protease 22 (Usp22) and ubiquitin‐specific protease 51 (Usp51). Knockdown of Usp22 shortened the half‐life of Hes1, delayed its oscillation, and enhanced neuronal differentiation in mouse developing brain, whereas mis‐expression of Usp27x reduced neuronal differentiation. These results suggest that these deubiquitinases modulate Hes1 protein dynamics by removing ubiquitin molecules, and thereby regulate neuronal differentiation of stem cells.
Physica D: Nonlinear Phenomena | 2008
Takahiro Harada; Akihiro Isomura; Kenichi Yoshikawa
The evolution of the spatial arrangement of cells in a primary culture of cardiac tissue derived from newborn rats was studied experimentally over an extended period. It was found that cells attract each other spontaneously to form a clustered structure over the timescale of several days. These clusters exhibit spontaneous rhythmic contraction and have been confirmed to consist of cardiac muscle cells. The addition of a contraction inhibitor (2,3-butanedione-2-monoxime) to the culture medium resulted in the inhibition of both the spontaneous contractions exhibited by the cells as well as the formation of clusters. Furthermore, the formation of clusters is suppressed when high concentrations of collagen are used for coating the substratum to which the cells adhere. From these experimental observations, it was deduced that the cells are mechanically stressed by the tension associated with repeated contractions and that this results in the cells becoming compact and attracting each other, finally resulting in the formation of clusters. This process can be interpreted as modulation of a cellular network by the activity associated with contraction, which could be employed to control cellular networks by modifying the dynamics associated with the contractions in cardiac tissue culture.
Progress of Theoretical Physics Supplement | 2006
Takahiro Harada; Akihiro Isomura
Spontaneous formation of cell clusters was experimentally studied for a cardiac cell culture system. A primary cell culture prepared from a newborn rat was cultivated and continuously observed using microscopy. It was found that the cells start to form small clusters following which a transient network of clusters was formed. Finally, the network structure was fragmented into distinct large clusters. The formation of these structures was found to proceed on a timescale of one week. Since it was found that addition of a chemical that inhibits the beating motion of cardiac cells into the culture medium suppresses the cluster formation, it has been deduced that the mechanical tension attributed to the beating motion of the cardiac cells drives the formation of clusters. The details of the experimental results are presented along with the present model on the mechanism.
Journal of Visualized Experiments | 2018
Akihiro Isomura; Ryoichiro Kageyama
Cells should respond properly to temporally changing environments, which are influenced by various factors from surrounding cells. The Notch signaling pathway is one of such essential molecular machinery for cell-to-cell communications, which plays key roles in normal development of embryos. This pathway involves a cell-to-cell transfer of oscillatory information with ultradian rhythms, but despite the progress in molecular biology techniques, it has been challenging to elucidate the impact of multicellular interactions on oscillatory gene dynamics. Here, we present a protocol that permits optogenetic control and live monitoring of gene expression patterns in a precise temporal manner. This method successfully revealed that intracellular and intercellular periodic inputs of Notch signaling entrain intrinsic oscillations by frequency tuning and phase shifting at the single-cell resolution. This approach is applicable to the analysis of the dynamic features of various signaling pathways, providing a unique platform to test a functional significance of dynamic gene expression programs in multicellular systems.
Current Opinion in Cell Biology | 2017
Akihiro Isomura; Ryoichiro Kageyama
Cells receive diverse signaling cues from their environment that trigger cascades of biochemical reactions in a dynamic manner. Single-cell imaging technologies have revealed that not only molecular species but also dynamic patterns of signaling inputs determine the fates of signal-receiving cells; however it has been challenging to elucidate how such dynamic information is delivered and decoded in complex networks of inter-cellular and inter-molecular interactions. The recent development of optogenetic technology with photo-sensitive proteins has changed this situation; the combination of microscopy and optogenetics provides fruitful insights into the mechanism of dynamic information processing at the single-cell level. Here, we review recent efforts to visualize the flows of dynamic patterns in signaling pathways, which utilize methods integrating single-cell imaging and optogenetics.