Akihiro Nishi
Saga University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akihiro Nishi.
Annals of the Institute of Statistical Mathematics | 1988
Kazuo Anraku; Akihiro Nishi; Takashi Yanagawa
Testing hypotheses on the marginal probabilities of a two-way contingency table is discussed. Three statistics are considered for testing the hypothesis of specified probabilities in the margins against alternatives with certain kind of order restriction. The properties of these statistics are discussed and their asymptotic behaviors are compared in depth. An appliction which motivated the consideration of the original testing problem is illustrated with a practical data.
Linear Algebra and its Applications | 1988
Akihiro Nishi
Abstract A formula for the sum of the coefficients of monomials of the form xl1j1⋯xlpjP is given, where j1,…,jp are given positive integers, in the polynomial ∏ i=1 n ∑ j=1 m a ij x j . When p=n and j1 = ⋯jn = 1, this formula coincides with the Binet-Minc formula for the evaluation of the permanent of the matrix (aij).
American Mathematical Monthly | 1988
Akihiro Nishi
The discriminant of fb(X) is the square of an integer and it follows that b2 4a2 = y2, say. Since b = u + v and a2 = uv, y = u v. It follows that y = u v and z = b = u + v is a positive integral solution of (2). Conversely, suppose that y, z is a positive integral solution of (2). Then y and z have the same parity and if we let u = (z + y)/2 and v = (z y)/2 then u > v > 0 where u and v are integers. Also, UV = (z2 _ y2)/4 = a2, and if b = u + v then u and v are solutions of X2 bX + a2 = 0. Thus, there is a one-to-one correspondence between the positive integral solutions of (2) and the integral solutions u, v of fb(X) = 0 such that u > v > O. It is easy to see that the number of pairs u, v in (3) such that u > v is given by {(2eo + 1) ... (2e,1 + 1) 1}/2 = N, say. Thus, the equation (2) has exactly N solutions for a given value of a.
佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2011
政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Akihiro Nishi; Masasuke Takefu; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座
佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2011
政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座
Journal of the Japanese Society of Computational Statistics | 2011
Muhammad Iqbal; Akihiro Nishi; Yasuki Kikuchi; Kentaro Nomakuchi
Journal of the Faculty of Culture and Education, Saga-University | 2011
Masasuke Takefu; Akihiro Nishi
佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2010
政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座
佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2010
政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座
佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2010
政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座