Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akihiro Nishi is active.

Publication


Featured researches published by Akihiro Nishi.


Annals of the Institute of Statistical Mathematics | 1988

Tests for the marginal probabilities in the two-way contingency table under restricted alternatives

Kazuo Anraku; Akihiro Nishi; Takashi Yanagawa

Testing hypotheses on the marginal probabilities of a two-way contingency table is discussed. Three statistics are considered for testing the hypothesis of specified probabilities in the margins against alternatives with certain kind of order restriction. The properties of these statistics are discussed and their asymptotic behaviors are compared in depth. An appliction which motivated the consideration of the original testing problem is illustrated with a practical data.


Linear Algebra and its Applications | 1988

A generalization of the Binet-Minc formula for the evaluation of permanents

Akihiro Nishi

Abstract A formula for the sum of the coefficients of monomials of the form xl1j1⋯xlpjP is given, where j1,…,jp are given positive integers, in the polynomial ∏ i=1 n ∑ j=1 m a ij x j . When p=n and j1 = ⋯jn = 1, this formula coincides with the Binet-Minc formula for the evaluation of the permanent of the matrix (aij).


American Mathematical Monthly | 1988

A method of obtaining Pythagorean triples

Akihiro Nishi

The discriminant of fb(X) is the square of an integer and it follows that b2 4a2 = y2, say. Since b = u + v and a2 = uv, y = u v. It follows that y = u v and z = b = u + v is a positive integral solution of (2). Conversely, suppose that y, z is a positive integral solution of (2). Then y and z have the same parity and if we let u = (z + y)/2 and v = (z y)/2 then u > v > 0 where u and v are integers. Also, UV = (z2 _ y2)/4 = a2, and if b = u + v then u and v are solutions of X2 bX + a2 = 0. Thus, there is a one-to-one correspondence between the positive integral solutions of (2) and the integral solutions u, v of fb(X) = 0 such that u > v > O. It is easy to see that the number of pairs u, v in (3) such that u > v is given by {(2eo + 1) ... (2e,1 + 1) 1}/2 = N, say. Thus, the equation (2) has exactly N solutions for a given value of a.


佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2011

万葉集4401番歌の「韓衣」と「母なしにして」の解釈について

政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Akihiro Nishi; Masasuke Takefu; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座


佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2011

万葉集1425番歌の「恋」の解釈について

政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座


Journal of the Japanese Society of Computational Statistics | 2011

Estimation of the Variance for the Maximum Likelihood Estimates in Normal Mixture Models and Normal Hidden Markov Models

Muhammad Iqbal; Akihiro Nishi; Yasuki Kikuchi; Kentaro Nomakuchi


Journal of the Faculty of Culture and Education, Saga-University | 2011

An Interpretation of the Fifth Phrase of the 734th Poem in Manyo-shu

Masasuke Takefu; Akihiro Nishi


佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2010

万葉集3241番歌の「難乞祷」の解釈について

政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座


佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2010

「にほふ」の語源と万葉集3791番歌の「丹穂之為」の訓釈について

政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座


佐賀大学文化教育学部研究論文集 / 佐賀大学文化教育学部 | 2010

万葉集443番歌の「牛留鳥」の解釈について

政資 竹生; 晃央 西; マサスケ タケフ; アキヒロ ニシ; Masasuke Takefu; Akihiro Nishi; 佐賀大学医学部地域医療科学教育研究センター; 佐賀大学文化教育学部理数教育講座

Collaboration


Dive into the Akihiro Nishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuo Anraku

Seinan Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge