Akihiro Watari
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akihiro Watari.
Journal of Cellular Physiology | 2003
Bing Qi; Yipeng Qi; Akihiro Watari; Naohisa Yoshioka; Hirokazu Inoue; Yuzuru Minemoto; Katsumi Yamashita; Toshiyuki Sasagawa; Masuo Yutsudo
We have previously shown that ectopic expression of the ASY/Nogo‐B gene induced apoptosis in various cancer cell lines. Nogo‐A, a splice variant of the ASY, has been reported to have an inhibitory effect on neuronal regeneration in the central nervous system. To investigate the mechanism of ASY‐induced apoptosis or inhibition of neuronal regeneration, we cloned a cDNA for the ASY‐interacting protein from the human cDNA library using the yeast two‐hybrid method, and obtained a cDNA we designated as ASYIP. The ASYIP protein contains two hydrophobic regions and a double lysine endoplasmic reticulum (ER) retrieval motif at its C‐terminus, which was shown to be identical to RTN3, a reticulon family protein of unknown function. We showed that ASY and ASYIP proteins formed a complex also in human cells. Mutational analysis indicated that both of the hydrophobic regions of the ASYIP protein were required for the association. By immunofluorescence analysis, the ASYIP protein was shown to be co‐localized with ASY in the ER. Characterization of the ASYIP gene may be very useful in clarifying the mechanism of ASY‐induced apoptosis or Nogo‐involved inhibition of neuronal regeneration in the central nervous system. J. Cell. Physiol. 196: 312–318, 2003.
Journal of Pharmacology and Experimental Therapeutics | 2010
Rie Saeki; Masuo Kondoh; Hideki Kakutani; Kohji Matsuhisa; Azusa Takahashi; Hidehiko Suzuki; Yohei Kakamu; Akihiro Watari; Kiyohito Yagi
Tumor metastasis of epithelium-derived tumors is the major cause of death from malignant tumors. Overexpression of claudin is observed frequently in malignant tumors. However, claudin-targeting antimetastasis therapy has never been investigated. We previously prepared a claudin-4-targeting antitumor molecule that consisted of the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) fused to protein synthesis inhibitory factor (PSIF) derived from Pseudomonas exotoxin. In the present study, we investigated whether claudin CPE receptors can be a target for tumor metastasis by using the C-CPE-fused PSIF as a claudin-targeting agent. One of the most popular murine metastasis models is the lung metastasis of intravenously injected B16 cells. Therefore, we first investigated the effects of the C-CPE-fused PSIF on lung metastasis of claudin-4-expressing B16 (CL4-B16) cells. Intravenous administration of the C-CPE-fused PSIF suppressed lung metastasis of CL4-B16 cells but not B16 cells. Injection of C-CPE-fused PSIF also inhibited tumor growth and spontaneous lung metastasis of murine breast cancer 4T1 cells inoculated into the subcutis. Treatment with C-CPE-fused PSIF did not show apparent side effects in mice. These findings indicate that claudin targeting may be a novel strategy for inhibiting some tumor metastases.
Journal of Pharmacology and Experimental Therapeutics | 2014
Xiangru Li; Manami Iida; Minoru Tada; Akihiro Watari; Yumi Kawahigashi; Yuka Kimura; Taku Yamashita; Akiko Ishii-Watabe; Tadayuki Uno; Masayoshi Fukasawa; Hiroki Kuniyasu; Kiyohito Yagi; Masuo Kondoh
Most malignant tumors are derived from epithelium, and claudin (CLDN)-3 and CLDN-4 are frequently overexpressed in such tumors. Although antibodies have potential in cancer diagnostics and therapy, development of antibodies against CLDNs has been difficult because the extracellular domains of CLDNs are too small and there is high homology among human, rat, and mouse sequences. Here, we created a monoclonal antibody that recognizes human CLDN-3 and CLDN-4 by immunizing rats with a plasmid vector encoding human CLDN-4. A hybridoma clone that produced a rat monoclonal antibody recognizing both CLDN-3 and -4 (clone 5A5) was obtained from a hybridoma screen by using CLDN-3– and -4–expressing cells; 5A5 did not bind to CLDN-1–, -2–, -5–, -6–, -7–, or -9–expressing cells. Fluorescence-conjugated 5A5 injected into xenograft mice bearing human cancer MKN74 or LoVo cells could visualize the tumor cells. The human-rat chimeric IgG1 monoclonal antibody (xi5A5) activated FcγRIIIa in the presence of CLDN-3– or -4–expressing cells, indicating that xi5A5 may exert antibody-dependent cellular cytotoxicity. Administration of xi5A5 attenuated tumor growth in xenograft mice bearing MKN74 or LoVo cells. These results suggest that 5A5 shows promise in the development of a diagnostic and therapeutic antibody for cancers.
PLOS ONE | 2015
Hidehiko Suzuki; Akihiro Watari; Eri Hashimoto; Miki Yonemitsu; Hiroshi Kiyono; Kiyohito Yagi; Masuo Kondoh; Jun Kunisawa
Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues is essential for the development of mucosal vaccine. We previously reported that claudin-4 was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT) and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced antigen-specific immune responses. In this study, we applied the C-CPE-based vaccine delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumococcal surface protein A (PspA), an important antigen for the induction of protective immunity against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These immune responses were sufficient to protect against pneumococcal infection. These results suggest that C-CPE is an efficient vaccine delivery system for the development of nasal vaccines against pneumococcal infection.
International Journal of Cancer | 2006
Misuzu Shimakage; Nobumasa Inoue; Kohichi Ohshima; Kunimitsu Kawahara; Takashi Oka; Kazuta Yasui; Kayoko Matsumoto; Hirokazu Inoue; Akihiro Watari; Shinji Higashiyama; Masuo Yutsudo
Adult T‐cell leukemia/lymphoma (ATLL) is an aggressive form of human leukemia/lymphoma. Although this disease is initiated by infection with human T‐lymphotropic virus type 1 (HTLV‐1), many HTLV‐1 carriers survive for a long period without aggressive illness, suggesting that other factors may play roles in the progression of ATLL to an aggressive state. However, the mechanism involved in this progression still remains unclear. Previously, we have reported that ASY/Nogo mRNA was markedly down‐regulated in human small‐cell lung carcinomas, whereas it was expressed in normal tissues and other lung carcinomas, such as adenocarcinoma and squamous cell carcinoma. To understand whether or not ASY/Nogo gene is involved in the progression of ATLL, we examined the expression of ASY/Nogo mRNA in smoldering, chronic and aggressive ATLL, and found that the expression level of ASY/Nogo mRNA was markedly reduced in clinically aggressive ATLL. HTLV‐1 Tax expression was not affected by the down‐regulation of ASY/Nogo mRNA. These results indicate that the ASY/Nogo gene may act as a suppressor against ATLL progression, independent of Tax expression.
Journal of Pharmacology and Experimental Therapeutics | 2015
Mayo Yamashita; Manami Iida; Minoru Tada; Yoshitaka Shirasago; Masayoshi Fukasawa; Shorato Nagase; Akihiro Watari; Akiko Ishii-Watabe; Kiyohito Yagi; Masuo Kondoh
Claudin-1 (CLDN1), a known host factor for hepatitis C virus (HCV) entry and cell-to-cell transmission, is a target molecule for inhibiting HCV infection. We previously developed four clones of mouse anti-CLDN1 monoclonal antibody (mAb) that prevented HCV infection in vitro. Two of these mAbs showed the highest antiviral activity. Here, we optimized the anti-CLDN1 mAbs as candidates for therapeutics by protein engineering. Although Fab fragments of the mAbs prevented in vitro HCV infection, their inhibitory effects were much weaker than those of the whole mAbs. In contrast, human chimeric IgG1 mAbs generated by grafting the variable domains of the mouse mAb light and heavy chains inhibited in vitro HCV infection as efficiently as the parental mouse mAbs. However, the chimeric IgG1 mAbs activated Fcγ receptor, suggesting that cytotoxicity against mAb-bound CLDN1-expressing cells occurred through the induction of antibody-dependent cellular cytotoxicity (ADCC). To avoid ADCC-induced side effects, we prepared human chimeric IgG4 mAbs. The chimeric IgG4 mAbs did not activate Fcγ receptor or induce ADCC, but they prevented in vitro HCV infection as efficiently as did the parental mouse mAbs. These findings indicate that the IgG4 form of human chimeric anti-CLDN1 mAb may be a candidate molecule for clinically applicable HCV therapy.
Journal of Pharmacology and Experimental Therapeutics | 2015
Misaki Nakajima; Shotaro Nagase; Manami Iida; Shuji Takeda; Mayo Yamashita; Akihiro Watari; Yoshitaka Shirasago; Masayoshi Fukasawa; Hiroyuki Takeda; Tatsuya Sawasaki; Kiyohito Yagi; Masuo Kondoh
Tight junctions (TJs) are complex biochemical structures that seal the intercellular space and prevent the free movement of solutes across epithelial cell sheets. Modulating the TJ seal is a promising option for increasing the transdermal absorption of drugs. Within TJs, the binding of the claudin (CLDN) family of tetratransmembrane proteins through cis- and trans-interactions is an integral part of seal formation. Because epidermal TJs contain CLDN-1 and CLDN-4, a binder for these CLDNs may be a useful modulator of the permeability of the epidermal barrier. Here, we investigated whether m19, which can bind to CLDN-1/-4 (also CLDN-2/-5), modulates the integrity of epidermal TJs and the permeability of cell sheets to solutes. Treatment of normal human epidermal keratinocytes (NHEKs) with the CLDN binder reduced the integrity of TJs. A CLDN-1–specific binder (a monoclonal antibody, clone 7A5) also weakened the TJ seal in NHEKs. Although m19 attenuated the TJ barrier in human intestinal epithelial cells (Caco-2), 7A5 did not. Treatment of NHEKs with 7A5 enhanced permeation of a paracellular permeation marker. These findings indicate that CLDN-1 is a potential target for modulating the permeability of the epidermis, and that our CLDN-1 binder is a promising candidate molecule for development as a dermal absorption enhancer.
European Journal of Pharmaceutics and Biopharmaceutics | 2015
Akihiro Watari; Maki Hashegawa; Kiyohito Yagi; Masuo Kondoh
Homoharringtonine (HHT), a natural alkaloid produced by various Cephalotaxus species, has antileukemic activity in acute and chronic myelogenous leukemia. However, HHT can also induce unanticipated effects in the gastrointestinal tract, such as diarrhea and nausea/vomiting, but the mechanism behind these adverse effects has not been clarified. In the present study, we show that HHT affects the epithelial permeability of intestinal Caco-2 cell monolayers. HHT reduced the transepithelial electrical resistance (TER) of Caco-2 cells in a dose- and time-dependent manner. The HHT effect was reversible and no cytotoxicity was observed at the concentrations used. HHT simultaneously increased the paracellular flux of the 4 kDa and 40 kDa FITC-dextrans associated with the TER reduction. Immunoblotting analysis revealed that HHT decreased the protein expression of TJ components such as claudin-3, -5, and -7. However, the transcription levels of these claudins were not repressed by HHT treatment. HHT also disturbed the cellular localization of claudin-1 and -4. These changes coincided with the reduced barrier function. Our findings suggest that HHT enhances the paracellular permeability of Caco-2 cell monolayers by modulating the protein expression and localization of claudin isoforms; these actions might be responsible for the gastrointestinal effects of HHT.
Pharmacology Research & Perspectives | 2016
Yosuke Hashimoto; Yumi Kawahigashi; Tomoyuki Hata; Xiangru Li; Akihiro Watari; Minoru Tada; Akiko Ishii-Watabe; Yoshiaki Okada; Takefumi Doi; Masayoshi Fukasawa; Hiroki Kuniyasu; Kiyohito Yagi; Masuo Kondoh
Claudin‐4 (CLDN‐4), a tight‐junction protein, is overexpressed in various malignant tumors, including gastric, colorectal, pancreatic, and breast cancers. However, CLDN‐4 is also expressed in normal tissues, including the liver, pancreas, kidney, and small intestine. Whether CLDN‐4 is an effective and safe target for cancer therapy has been unclear owing to the lack of a binder with both CLDN‐4 specificity and cross‐reactivity to human and murine cells. In this study, we successfully generated a rat anti‐CLDN‐4 monoclonal antibody (5D12) that was specific to, and cross‐reactive with, human and mouse CLDN‐4. 5D12 recognized the second extracellular domain of human CLDN‐4 in a conformation‐dependent manner. A human–rat chimeric IgG1 of 5D12 (xi‐5D12) activated the FcγIIIa receptor, indicating the activation of antibody‐dependent cellular cytotoxicity in CLDN‐4‐expressing cells. Moreover, xi‐5D12 significantly suppressed tumor growth in mice bearing human colorectal and gastric tumors without apparent adverse effects, such as weight loss or liver and kidney damage. These results suggest that CLDN‐4 is a potent target for cancer therapy and that an anti‐CLDN‐4 antibody is a promising candidate anticancer agent.
PLOS ONE | 2016
Akihiro Watari; Maki Hasegawa; Kiyohito Yagi; Masuo Kondoh
Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine.