Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akihito Yamano.
Biochimica et Biophysica Acta | 2008
Koji Tomoo; Yasuhiro Mukai; Yasuko In; Hiroo Miyagawa; Kunihiro Kitamura; Akihito Yamano; Heisaburo Shindo; Toshimasa Ishida
Parkin is the gene product identified as the major cause of autosomal recessive juvenile Parkinsonism (AR-JP). Parkin, a ubiquitin ligase E3, contains a unique ubiquitin-like domain in its N-terminus designated Uld which is assumed to be a interaction domain with the Rpn 10 subunit of 26S proteasome. To elucidate the structural and functional role of Uld in parkin at the atomic level, the X-ray crystal structure of murine Uld was determined and a molecular dynamics simulation of wild Uld and its five mutants (K27N, R33Q, R42P, K48A and V56E) identified from AR-JP patients was performed. Murine Uld consists of two alpha helices [Ile23-Arg33 (alpha1) and Val56-Gln57 (alpha2)] and five beta strands [Met1-Phe7 (beta1), Tyr11-Asp18 (beta2), Leu41-Phe45 (beta3), Lys48-Pro51 (beta4) and Ser65-Arg72 (beta5)] and its overall structure is essentially the same as that of human ubiquitin with a 1.22 A rmsd for the backbone atoms of residues 1-76; however, the sequential identity and similarity between both molecules are 32% and 63%, respectively. This close resemblance is due to the core structure built by same hydrogen bond formations between and within the backbone chains of alpha1 and beta1/2/5 secondary structure elements and by nearly the same hydrophobic interactions formed between the nonpolar amino acids of their secondary structures. The side chain NetaH of Lys27 on the alpha1 helix was crucial to the stabilization of the spatial orientations of beta3 and beta4 strands, possible binding region with Rpn 10 subunit, through three hydrogen bonds. The MD simulations showed the K27N and R33Q mutations increase the structural fluctuation of these beta strands including the alpha1 helix. Reversely, the V56E mutant restricted the spatial flexibility at the periphery of the short alpha2 helix by the interactions between the polar atoms of Glu56 and Ser19 residues. However, a large fluctuation of beta4 strand with respect to beta5 strand was induced in the R42P mutant, because of the impossibility of forming paired hydrogen bonds of Pro for Arg42 in wild Uld. The X-ray structure showed that the side chains of Asp39, Gln40 and Arg42 at the N-terminal periphery of beta3 strand protrude from the molecular surface of Uld and participate in hydrogen bonds with the polar residues of neighboring Ulds. Thus, the MD simulation suggests that the mutation substitution of Pro for Arg42 not only causes the large fluctuation of beta3 strand in the Uld but also leads to the loss of the ability of Uld to trap the Rpn 10 subunit. In contrast, the MD simulation of K48A mutant showed little influence on the beta3-beta4 loop structure, but a large fluctuation of Lys48 side chain, suggesting the importance of flexibility of this side chain for the interaction with the Rpn 10 subunit. The present results would be important in elucidating the impaired proteasomal binding mechanism of parkin in AR-JP.
Acta Crystallographica Section D-biological Crystallography | 2006
Hideyuki Miyatake; Tomokazu Hasegawa; Akihito Yamano
New techniques are presented for the preparation of iodine derivatives, involving vapour diffusion of iodine. Firstly, in the vaporizing iodine labelling (VIL) technique, a small amount of KI/I(2) solution is enclosed in a crystallization well, with the result that gaseous I(2) molecules diffuse into the crystallization droplets without exerting substantial changes in ionic strength in the target crystals. Once they have diffused into the droplet, the I(2) molecules sometimes iodinate accessible tyrosines at ortho positions. Secondly, when iodination is insufficient, the hydrogen peroxide VIL (HYPER-VIL) technique can be further applied to increase the iodination ratio by the addition of a small droplet of hydrogen peroxide (H(2)O(2)) to the crystallization well; the gaseous H(2)O(2) also diffuses into the crystallization droplet to emphasize the iodination. These techniques are most effective for phase determination when coupled with softer X-rays, such as those from Cu Kalpha or Cr Kalpha radiation. The effectiveness of these techniques was assessed using five different crystals. Four of the crystals were successfully iodinated, providing sufficient phasing power for structure determination.
Journal of Biochemistry | 2017
Koji Tomoo; Yasuhiro Miki; Hideaki Morioka; Kiho Seike; Toshimasa Ishida; Sadao Ikenishi; Katsushiro Miyamoto; Tomokazu Hasegawa; Akihito Yamano; Kensaku Hamada; Hiroshi Tsujibo
BxlE from Streptomyces thermoviolaceus OPC-520 is a xylo-oligosaccharide (mainly xylobiose)-binding protein that serves as the initial receptor for the bacterial ABC-type xylo-oligosaccharide transport system. To determine the ligand-binding mechanism of BxlE, X-ray structures of ligand-free (open form) and ligand (xylobiose)-bound (closed form) BxlE were determined at 1.85 Å resolution. BxlE consists of two globular domains that are linked by two β-strands, with the cleft at the interface of the two domains creating the ligand-binding pocket. In the ligand-free open form, this pocket consists of a U-shaped and negatively charged groove located between the two domains. In the xylobiose-bound closed form of BxlE, both the N and C domains move to fold the ligand without conformational changes in either domain. Xylobiose is buried in the groove and wrapped by the N-domain mainly via hydrogen bond interactions and by the C-domain primarily via non-polar interactions with Trp side chains. In addition to the concave shape matching the binding of xylobiose, an inter-domain salt bridge between Asp-47 and Lys-294 limits the space in the ligand-binding site. This domain-stabilized mechanism of ligand binding to BxlE is a unique feature that is not observed with other solute-binding proteins.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Hideaki Morioka; Yasuhiro Miki; Kei Saito; Koji Tomoo; Toshimasa Ishida; Tomokazu Hasegawa; Akihito Yamano; Chiaki Takada; Katsushiro Miyamoto; Hiroshi Tsujibo
BxlA from Streptomyces thermoviolaceus OPC-520, together with the extracellular BxlE and the integral membrane proteins BxlF and BxlG, constitutes a xylanolytic system that participates in the intracellular transport of xylan-degradation products and the production of xylose. To elucidate the mechanism of the hydrolytic degradation of xylooligosaccharides to xylose at the atomic level, X-ray structural analysis of BxlA was attempted. The recombinant BxlA protein (molecular weight 82 kDa) was crystallized by the hanging-drop vapour-diffusion method at 289 K. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 142.2, b = 129.5, c = 101.4 A, beta = 119.8 degrees , and contained two molecules per asymmetric unit (V(M) = 2.47 A(3) Da(-1)). Diffraction data were collected to a resolution to 2.50 A and provided a data set with an overall R(merge) of 8.3%.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2007
Kiho Seike; Junji Sato; Koji Tomoo; Toshimasa Ishida; Akihito Yamano; Sadao Ikenishi; Katsushiro Miyamoto; Hiroshi Tsujibo
Together with the integral membrane proteins BxlF and BxlG, BxlE isolated from Streptomyces thermoviolaceus OPC-520 forms an ATP-binding cassette (ABC) transport system that mediates the uptake of xylan. To clarify the structural basis of sugar binding by BxlE at the atomic level, recombinant BxlE was crystallized using the hanging-drop vapour-diffusion method at 290 K. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 44.63, b = 63.27, c = 66.40 A, beta = 103.05 degrees, and contained one 48 kDa molecule per asymmetric unit (V(M) = 1.96 A3 Da(-1)). Diffraction data collected to a resolution of 1.65 A using a rotating-anode X-ray source gave a data set with an overall R(merge) of 2.6% and a completeness of 91.3%. A data set from a platinum derivative is being used for phasing by the SAD method.
Archive | 2003
Akihito Yamano; Masashi Miyano; Kensaku Hamada
Archive | 2004
Akihito Yamano; Takahisa Sato; Hiroki Yoshida; Motohide Yoshimura; Kensaku Hamada
Archive | 2004
Takahisa Sato; Akihito Yamano; Shoichi Yasukawa; Hiroki Yoshida; Kensaku Hamada
Archive | 2003
Kensaku Hamada; Masashi Miyano; Akihito Yamano
Archive | 2003
Akihito Yamano; Masashi Miyano; Kensaku Hamada