Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiko Harauma is active.

Publication


Featured researches published by Akiko Harauma.


Journal of Nutrition | 2006

Aged Garlic Extract Improves Blood Pressure in Spontaneously Hypertensive Rats More Safely than Raw Garlic

Akiko Harauma; Toru Moriguchi

We studied the effects of two garlic sources on systolic blood pressure (SBP) using spontaneously hypertensive rats (SHRs). Beginning at 12 wk of age, male SHRs were fed diets containing either aged garlic extract (AGE) or raw garlic (RG) powder for 10 wk. Both AGE and RG reduced the increase of SBP compared with the control group from 4 wk after beginning the experimental diets. The effect of AGE was accompanied by a decrease of pulse pressure (PP), suggesting an improvement of the pliability of the artery, although RG did not affect PP. However, harmful effects were observed in the RG group, including a decrease in erythrocytes, an increase in reticulocytes, and generation of papilloma in the forestomach. These results suggest that AGE may safely improve several factors related to blood vessel physiology and circulatory disease.


Frontiers in Genetics | 2013

Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus

Jane A. English; Akiko Harauma; Melanie Föcking; Kieran Wynne; Caitriona Scaife; Gerard Cagney; Toru Moriguchi; David Cotter

Omega-3 fatty acid (n-3 FA) deficiency is an environmental risk factor for schizophrenia, yet characterization of the consequences of deficiency at the protein level in the brain is limited. We aimed to identify the protein pathways disrupted as a consequence of chronic n-3 deficiency in the hippocampus of mice. Fatty acid analysis of the hippocampus following chronic dietary deficiency revealed a 3-fold decrease (p < 0.001) in n-3 FA levels. Label free LC-MS/MS analysis identified and profiled 1008 proteins, of which 114 were observed to be differentially expressed between n-3 deficient and control groups (n = 8 per group). The cellular processes that were most implicated were neuritogenesis, endocytosis, and exocytosis, while specific protein pathways that were most significantly dysregulated were mitochondrial dysfunction and clathrin mediated endocytosis (CME). In order to characterize whether these processes and pathways are ones influenced by antipsychotic medication, we used LC-MS/MS to test the differential expression of these 114 proteins in the hippocampus of mice chronically treated with the antipsychotic agent haloperidol. We observed 23 of the 114 proteins to be differentially expressed, 17 of which were altered in the opposite direction to that observed following n-3 deficiency. Overall, our findings point to disturbed synaptic function, neuritogenesis, and mitochondrial function as a consequence of dietary deficiency in n-3 FA. This study greatly aids our understanding of the molecular mechanism by which n-3 deficiency impairs normal brain function, and provides clues as to how n-3 FA exert their therapeutic effect in early psychosis.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2017

The essentiality of arachidonic acid in addition to docosahexaenoic acid for brain growth and function

Akiko Harauma; Hidemi Yasuda; Erisa Hatanaka; Manabu T. Nakamura; Norman Salem; Toru Moriguchi

The essentiality of arachidonic acid (ARA) and docosahexaenoic acid (DHA) for growth and brain function using delta-6-desaturase knockout (D6D-KO) mice and a novel artificial rearing method was investigated. Newborn male wild type (WT) and homozygous D6D-KO pups were separated from their dams within 48h and fed artificial milk containing α-linolenic acid and linoleic acid (Cont), or supplemented with ARA, DHA or both (ARA+DHA). After weaning, each group was fed diets similar to artificial milk in fatty acid composition for 7 weeks. KO-Cont showed a lower body weight than WT-Cont. When ARA was added to the control diet, (KO-ARA and KO-ARA+DHA diets) the body weight gain was restored. The KO-DHA group was initially similar to the WT groups for the first 6 weeks, but afterwards their body weight was significantly lower. Brain weight in the 10 week old KO-ARA+DHA group was significantly higher within the KO dietary groups. Motor activity of the KO-ARA and KO-ARA+DHA groups was elevated relative to the KO-Cont group but the KO-ARA+DHA group exhibited similar activity to the WT-Cont group. In the motor coordination ability test, the KO-Cont group performed significantly worse compared with the WT-Cont group. KO-ARA mice showed decreased motor coordination in spite of their increased motor activity. The best performance was observed in only KO-ARA+DHA mice. These experiments demonstrated that supplementation with only ARA or only DHA was insufficient for optimal development. ARA was essential for normal growth within the lactation period. In conclusion, only the combination of preformed ARA and DHA was capable of improving the dysfunction caused by D6D deficiency.


Lipids | 2010

Repletion of n-3 Fatty Acid Deficient Dams with α-Linolenic Acid: Effects on Fetal Brain and Liver Fatty Acid Composition

Akiko Harauma; Norman Salem; Toru Moriguchi

Docosahexaenoic acid (DHA) supply to the fetal brain depends upon the dam’s dietary intake of n-3 fats. In this study, we measured the incorporation of DHA into the fetal brain and liver in n-3 fatty acid deficient (0.1% alpha-linolenate) mice upon switching to an n-3 fatty acid adequate (2.1% alpha-linolenate) diet. Second generation mice raised and maintained on an n-3 deficient diet during mating were switched to an n-3 adequate diet on embryonic day 1 (ED 1) or ED 13. Fatty acid analysis was performed on fetal brains and livers and on maternal serum on ED 13, 15, 17, and 19. Although fetal brain and liver DHA began at a very low level (both exhibited an 85% decline), recovery was nearly complete by ED 15 in the group switched near conception but thereafter diverged. The maternal serum and fetal liver were very similar in their DHA and docosapentaenoic acid time courses. However, when repletion began on ED 13, brain DHA recovery was only about 44%. These results suggest that a nutritional intervention with alpha-linolenic acid can nearly but incompletely rescue the mouse fetal DHA deficiency if began at the time of conception but that the third trimester is too late, thus leaving a large DHA gap.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2016

Essentiality of arachidonic acid intake in murine early development

Erisa Hatanaka; Akiko Harauma; Hidemi Yasuda; Junnosuke Watanabe; Manabu T. Nakamura; Norman Salem; Toru Moriguchi

We previously reported the importance of long-chain polyunsaturated fatty acid (LC-PUFA (>C20)) intake, including arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), for growth. This follow-up study focuses on ARA using a novel artificial rearing model during the lactation period in delta-6-desaturase knockout (D6D-KO) mice. Newborn D6D-KO male mouse pups were separated from dams within 48 hours and fed artificial milks containing 18-C essential fatty acids (EFAs) (16-17% LA, 3.8-4.1% ALA) with or without 1.2% ARA. After weaning, mice were maintained on similar diets: 15% LA, 2.3-2.4% ALA with or without 1.9% ARA. As a reference group, new born wild type (WT) male mouse pups were maintained by artificial milk and diet containing LA and ALA without ARA. Aspects of brain function were measured behaviorally (motor activity and rota-rod test) when mice were age 9 weeks. Body weight in the KO-Cont group was significantly lower (approximately 30%) than in the WT-Cont group, but this decrease was ameliorated by providing ARA in the KO-ARA group. The motor activity and coordination in the KO-Cont group decreased markedly compared to the WT-Cont group. The KO-ARA group had a tendency toward deteriorated motor coordination, although the motor activity was significantly enhanced compared to the KO-Cont group. In KO-ARA group brains, the level of ARA was increased and DHA decreased compared to WT-Cont. These results suggest that intake of LA and ALA only is insufficient to support healthy growth, and that ARA is also required, at least during the lactation period. These findings also suggested that continued intake of relatively high levels of ARA and without supplemental DHA during development led to an increased motor activity above that of WT animals. These studies indicate that both ARA dose and proper combination with DHA must be delineated to define optimal growth and behavioral function.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2015

Effect of long-term administration of arachidonic acid on n-3 fatty acid deficient mice

Akiko Harauma; Makiko Tomita; Daiki Muto; Toru Moriguchi

The effect of long-term oral administration of arachidonic acid (ARA, 240 mg/kg/day) on brain function was assessed for mice maintained on an n-3 fatty acid adequate or deficient diet. The administration of ARA for 13 weeks resulted in an elevation of spontaneous motor activity, or the tendency thereof, in both the n-3 fatty acid adequate and deficient groups. However, the n-3 fatty acid deficient mice that were administered with ARA revealed marked deterioration in motor function in a motor coordination test. In the experiment to investigate changes over time, the motor activity of the ARA-administered group continued to increase mildly in n-3 deficient mice, although that of the control group showed a decrease involving habituation for both diet groups from the second week. The fatty acid composition of the brain at the end of the behavioral experiments indicated an increase in the levels of ARA and other n-6 fatty acids, as well as a decrease in the levels of docosahexaenoic acid. These results suggest that long-term administration of ARA causes an increase of futile spontaneous motor activity and the diminution of motor function by aggravation of n-3 fatty acid deficiency.


British Journal of Nutrition | 2015

Effects of arachidonic acid intake on inflammatory reactions in dextran sodium sulphate-induced colitis in rats.

Yukiko Naito; Xu Ji; Shigehiro Tachibana; Satoko Aoki; Mami Furuya; Yoshiyuki Tazura; Daisuke Miyazawa; Akiko Harauma; Toru Moriguchi; Tomoko Nagata; Naoharu Iwai; Naoki Ohara

The aim of this study was to investigate the effects of the administration of oral arachidonic acid (AA) in rats with or without dextran sulphate sodium (DSS)-induced inflammatory bowel disease. Male Wistar rats were administered AA at 0, 5, 35 or 240 mg/kg daily by gavage for 8 weeks. Inflammatory bowel disease was induced by replacing drinking water with 3 % DSS solution during the last 7 d of the AA dosing period. These animals passed loose stools, diarrhoea and red-stained faeces. Cyclo-oxygenase-2 concentration and myeloperoxidase activity in the colonic tissue were significantly increased in the animals given AA at 240 mg/kg compared with the animals given AA at 0 mg/kg. Thromboxane B2 concentration in the medium of cultured colonic mucosae isolated from these groups was found to be dose-dependently increased by AA, and the increase was significant at 35 and 240 mg/kg. Leukotriene B4 concentration was also significantly increased and saturated at 5 mg/kg. In addition, AA at 240 mg/kg promoted DSS-induced colonic mucosal oedema with macrophage infiltration. In contrast, administration of AA for 8 weeks, even at 240 mg/kg, showed no effects on the normal rats. These results suggest that in rats with bowel disease AA metabolism is affected by oral AA, even at 5 mg/kg per d, and that excessive AA may aggravate inflammation, whereas AA shows no effects in rats without inflammatory bowel disease.


British Journal of Nutrition | 2013

Arachidonic acid supplementation during gestational, lactational and post-weaning periods prevents retinal degeneration induced in a rodent model

Katsuhiko Yoshizawa; Tomo Sasaki; Maki Kuro; Norihisa Uehara; Hideho Takada; Akiko Harauma; Naoki Ohara; Toru Moriguchi; Airo Tsubura

Fatty acids and their derivatives play a role in the response to retinal injury. The effects of dietary arachidonic acid (AA) supplementation on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration was investigated in young Lewis rats during the gestational, lactational and post-weaning periods. Dams were fed 0·1, 0·5 or 2·0% AA diets or a basal (< 0·01% AA) diet. On postnatal day 21 (at weaning), male pups received a single intraperitoneal injection of 50 mg MNU/kg or vehicle, and were fed the same diet as their mother for 7 d. Retinal apoptosis was analysed by the terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick-end labelling (TUNEL) assay 24 h after the MNU treatment, and retinal morphology was examined 7 d post-MNU. Histologically, all rats that received MNU and were fed the basal and 0·1% AA diets developed retinal degeneration characterised by the loss of photoreceptor cells (disappearance of the outer nuclear layer and the photoreceptor layer) in the central retina. The 0·5 and 2·0% AA diets rescued rats from retinal damage. Morphometrically, in parallel with the AA dose (0·5 and 2·0% AA), the photoreceptor ratio significantly increased and the retinal damage ratio decreased in the central retina, compared with the corresponding ratios in basal diet-fed rats. In parallel with the increase in serum and retinal AA levels and the AA:DHA ratio, the apoptotic index in the central retina was dose-dependently decreased in rats fed the 0·5 and 2·0% AA diets. In conclusion, an AA-rich diet during the gestation, lactation and post-weaning periods rescued young Lewis rats from MNU-induced retinal degeneration via the inhibition of photoreceptor apoptosis. Therefore, an AA-enriched diet in the prenatal and postnatal periods may be an important strategy to suppress the degree of photoreceptor injury in humans.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2014

Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice

Akiko Harauma; Junpei Saito; Yoshitake Watanabe; Toru Moriguchi

The purpose of this study was to determine the change in tear volume, as a predominant symptom of dry eye syndrome, in dietary n-3 fatty acid deficient mice compared with n-3 fatty acid adequate mice. The tear volume in n-3 fatty acid deficient mice was significantly lower than that in n-3 fatty acid adequate mice. In addition, the concentration of n-3 fatty acid in the lacrimal and meibomian glands, which affects the production of tears, was markedly decreased compared with n-3 fatty acid adequate mice. However, the tear volume recovered almost completely after one week of continuous administration of fish oil containing EPA and DHA in n-3 fatty acid deficient mice. Also, the concentration of DHA in the meibomian gland of n-3 fatty acid deficient group recovered to approximately 80% more than that of n-3 fatty acid adequate group. These results suggested that dietary n-3 fatty acids deficiency showed reversible dry eye syndrome, and that n-3 fatty acids have an important role in the production of tears.


Experimental Animals | 2016

Artificially reared mice exhibit anxiety-like behavior in adulthood.

Hidemi Yasuda; Akiko Harauma; Maki Kato; Yuki Ootomo; Erisa Hatanaka; Toru Moriguchi

It is important to establish experimental animal techniques that are applicable to the newborn and infant phases for nutrition and pharmacological studies. Breeding technology using the artificial suckling method without breast milk is very effective for the study of newborn nutrition. Using this method, we separated newborn mice from dams within 48 h of birth and provided them with artificial milk. We evaluated mouse anxiety levels after early postnatal maternal separation. Artificially reared mice were subjected to elevated plus-maze tests to assess emotional behavior at 9 weeks of age. Artificially reared mice showed a significantly lower frequency of entries and dipping into the open arms of the maze compared with dam-reared mice. This result indicates that the anxiety level of artificially reared mice was higher than that of dam-reared mice. Moreover, the concentration of monoamines in the brain was determined after the behavioral experiment. The hippocampal norepinephrine, serotonin, and 5-hydroxyindoleacetic acid levels in the artificially reared mice were significantly higher than those of the dam-reared mice. These results suggest that maternal-offspring interactions are extremely important for the emotional development of newborn infants during the lactation period. In future studies, it is necessary to consider the environmental factors and conditions that minimize the influence of artificial rearing on emotional behavior.

Collaboration


Dive into the Akiko Harauma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoki Ohara

Kinjo Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Cotter

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Gerard Cagney

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Jane A. English

Royal College of Surgeons in Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge