Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiko Maruyama-Nakashita is active.

Publication


Featured researches published by Akiko Maruyama-Nakashita.


The Plant Cell | 2008

Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid–Mediated Abiotic Stress Response in Arabidopsis

Michiko Yasuda; Atsushi Ishikawa; Yusuke Jikumaru; Motoaki Seki; Taishi Umezawa; Tadao Asami; Akiko Maruyama-Nakashita; Toshiaki Kudo; Kazuo Shinozaki; Shigeo Yoshida; Hideo Nakashita

Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is effective against a broad range of pathogens. SAR development in dicotyledonous plants, such as tobacco (Nicotiana tabacum) and Arabidopsis thaliana, is mediated by salicylic acid (SA). Here, using two types of SAR-inducing chemicals, 1,2-benzisothiazol-3(2H)-one1,1-dioxide and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester, which act upstream and downstream of SA in the SAR signaling pathway, respectively, we show that treatment with abscisic acid (ABA) suppresses the induction of SAR in Arabidopsis. In an analysis using several mutants in combination with these chemicals, treatment with ABA suppressed SAR induction by inhibiting the pathway both upstream and downstream of SA, independently of the jasmonic acid/ethylene-mediated signaling pathway. Suppression of SAR induction by the NaCl-activated environmental stress response proved to be ABA dependent. Conversely, the activation of SAR suppressed the expression of ABA biosynthesis–related and ABA-responsive genes, in which the NPR1 protein or signaling downstream of NPR1 appears to contribute. Therefore, our data have revealed that antagonistic crosstalk occurs at multiple steps between the SA-mediated signaling of SAR induction and the ABA-mediated signaling of environmental stress responses.


Plant Journal | 2009

Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types.

Cintia G. Kawashima; Naoko Yoshimoto; Akiko Maruyama-Nakashita; Yumiko N. Tsuchiya; Kazuki Saito; Hideki Takahashi; Tamas Dalmay

Plants play an important role in the global sulphur cycle because they assimilate sulphur from the environment and build it into methionine and cysteine. Several genes of the sulphur assimilation pathway are regulated by microRNA-395 (miR395) that is itself induced by a low-sulphur (-S) environment. Here, we show that the six Arabidopsis miR395 loci are induced differently. We find that MIR395 loci are expressed in the vascular system of roots and leaves and root tips. Induction of miR395 by a -S environment in both roots and leaves suggests that translocation of miR395 from leaves to roots through the phloem is not necessary for plants growing on -S soil/medium. We also demonstrate that induction of miR395 is controlled by SLIM1, a key transcription factor in the sulphur assimilation pathway. Unexpectedly, the mRNA level of a miR395 target gene, SULTR2;1, strongly increases during miR395 induction in roots. We show that the spatial expression pattern of MIR395 transcripts in the vascular system does not appear to overlap with the expression pattern previously reported for SULTR2;1 mRNA. These results illustrate that negative temporal correlation between the expression level of a miRNA and its target gene in a complex tissue cannot be a requirement for target gene validation.


Plant Physiology | 2003

Transcriptome Profiling of Sulfur-Responsive Genes in Arabidopsis Reveals Global Effects of Sulfur Nutrition on Multiple Metabolic Pathways

Akiko Maruyama-Nakashita; Eri Inoue; Akiko Watanabe-Takahashi; Tomoyuki Yamaya; Hideki Takahashi

Sulfate is a macronutrient required for cell growth and development. Arabidopsis has two high-affinity sulfate transporters (SULTR1;1 and SULTR1;2) that represent the sulfate uptake activities at the root surface. Sulfur limitation (–S) response relevant to the function of SULTR1;2 was elucidated in this study. We have isolated a novel T-DNA insertion allele defective in the SULTR1;2 sulfate transporter. This mutant, sel1-10, is allelic with the sel1 mutants identified previously in a screen for increased tolerance to selenate, a toxic analog of sulfate (Shibagaki et al., 2002). The abundance of SULTR1;1 mRNA was significantly increased in the sel1-10 mutant; however, this compensatory up-regulation of SULTR1;1 was not sufficient to restore the growth. The sulfate content of the mutant was 10% to 20% of the wild type, suggesting that induction of SULTR1;1 is not fully complementing the function of SULTR1;2 and that SULTR1;2 serves as the major facilitator for the acquisition of sulfate in Arabidopsis roots. Transcriptome analysis of approximately 8,000 Arabidopsis genes in the sel1-10 mutant suggested that dysfunction of the SULTR1;2 transporter can mimic general –S symptoms. Hierarchal clustering of sulfur responsive genes in the wild type and mutant indicated that sulfate uptake, reductive sulfur assimilation, and turnover of secondary sulfur metabolites are activated under –S. The profiles of –S-responsive genes further suggested induction of genes that may alleviate oxidative damage and generation of reactive oxygen species caused by shortage of glutathione.


The Plant Cell | 2006

Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism

Akiko Maruyama-Nakashita; Yumiko Nakamura; Takayuki Tohge; Kazuki Saito; Hideki Takahashi

Sulfur is an essential macronutrient required for plant growth. To identify key transcription factors regulating the sulfur assimilatory pathway, we screened Arabidopsis thaliana mutants using a fluorescent reporter gene construct consisting of the sulfur limitation-responsive promoter of the SULTR1;2 sulfate transporter and green fluorescent protein as a background indicator for monitoring plant sulfur responses. The isolated mutant, sulfur limitation1 (slim1), was unable to induce SULTR1;2 transcripts under low-sulfur (–S) conditions. Mutations causing the sulfur limitation responseless phenotypes of slim1 were identified in an EIL family transcription factor, ETHYLENE-INSENSITIVE3-LIKE3 (EIL3), whose functional identity with SLIM1 was confirmed by genetic complementation. Sulfate uptake and plant growth on –S were significantly reduced by slim1 mutations but recovered by overexpression of SLIM1. SLIM1 functioned as a central transcriptional regulator, which controlled both the activation of sulfate acquisition and degradation of glucosinolates under –S conditions. Metabolite analysis indicated stable accumulation of glucosinolates in slim1 mutants, even under –S conditions, particularly in the molecular species with methylsulfinylalkyl side chains beneficial to human health. Overexpression of SLIM1 and its rice (Oryza sativa) homologs, but no other EIL genes of Arabidopsis, restored the sulfur limitation responseless phenotypes of slim1 mutants, suggesting uniqueness of the SLIM1/EIL3 subgroup members as sulfur response regulators.


The Plant Cell | 2015

Sulfur-Responsive Elements in the 3′-Nontranscribed Intergenic Region Are Essential for the Induction of SULFATE TRANSPORTER 2;1 Gene Expression in Arabidopsis Roots under Sulfur Deficiency

Akiko Maruyama-Nakashita; Akiko Watanabe-Takahashi; Eri Inoue; Tomoyuki Yamaya; Kazuki Saito; Hideki Takahashi

Root-to-shoot transportation of the essential nutrient sulfate requires a unique molecular mechanism that controls the expression of a sulfate transporter in root vascular tissues. Under sulfur deficiency (−S), plants induce expression of the sulfate transport systems in roots to increase uptake and root-to-shoot transport of sulfate. The low-affinity sulfate transporter SULTR2;1 is predominantly expressed in xylem parenchyma and pericycle cells in Arabidopsis thaliana roots under –S. The mechanisms underlying –S-inducible expression of SULTR2;1 in roots have remained unclear, despite the possible significance of SULTR2;1 for acclimation to low-sulfur conditions. In this investigation, examination of deletions and base substitutions in the 3′-intergenic region of SULTR2;1 revealed novel sulfur-responsive elements, SURE21A (5′-CAATGTATC-3′) and SURE21B (5′-CTAGTAC-3′), located downstream of the SULTR2;1 3′-untranslated region. SURE21A and SULTR21B effectively induced reporter gene expression from fusion constructs under –S in combination with minimal promoters or promoters not inducible by –S, suggesting their versatility in controlling transcription. T-DNA insertions near SURE21A and SULTR21B abolished −S-inducible expression of SULTR2;1 in roots and reduced the uptake and root-to-shoot transport of sulfate. In addition, these mutations partially suppressed SULTR2;1 expression in shoots, without changing its –S-responsive expression. These findings indicate that SULTR2;1 contributes to the increase in uptake and internal translocation of sulfate driven by gene expression induced under the control of sulfur-responsive elements in the 3′-nontranscribed intergenic region of SULTR2;1.


Science Advances | 2016

Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants

Fayezeh Aarabi; Miyuki Kusajima; Takayuki Tohge; Tomokazu Konishi; Tamara Gigolashvili; Makiko Takamune; Yoko Sasazaki; Mutsumi Watanabe; Hideo Nakashita; Alisdair R. Fernie; Kazuki Saito; Hideki Takahashi; Hans Michael Hubberten; Rainer Hoefgen; Akiko Maruyama-Nakashita

Researchers report how sulfur deficiency affects glucosinolate biosynthesis in plants. Glucosinolates (GSLs) in the plant order of the Brassicales are sulfur-rich secondary metabolites that harbor antipathogenic and antiherbivory plant-protective functions and have medicinal properties, such as carcinopreventive and antibiotic activities. Plants repress GSL biosynthesis upon sulfur deficiency (−S); hence, field performance and medicinal quality are impaired by inadequate sulfate supply. The molecular mechanism that links –S to GSL biosynthesis has remained understudied. We report here the identification of the –S marker genes sulfur deficiency induced 1 (SDI1) and SDI2 acting as major repressors controlling GSL biosynthesis in Arabidopsis under –S condition. SDI1 and SDI2 expression negatively correlated with GSL biosynthesis in both transcript and metabolite levels. Principal components analysis of transcriptome data indicated that SDI1 regulates aliphatic GSL biosynthesis as part of –S response. SDI1 was localized to the nucleus and interacted with MYB28, a major transcription factor that promotes aliphatic GSL biosynthesis, in both yeast and plant cells. SDI1 inhibited the transcription of aliphatic GSL biosynthetic genes by maintaining the DNA binding composition in the form of an SDI1-MYB28 complex, leading to down-regulation of GSL biosynthesis and prioritization of sulfate usage for primary metabolites under sulfur-deprived conditions.


Archive | 2017

Sulfur Assimilation and Glutathione Metabolism in Plants

Akiko Maruyama-Nakashita; Naoko Ohkama-Ohtsu

Sulfur is an essential element for all organisms. Plants utilize soil sulfate to synthesize an amino acid, cysteine, which is used for a variety of sulfur-containing compounds such as glutathione (GSH), methionine, proteins, lipids, coenzymes, and various secondary metabolites. Since animals cannot synthesize organic sulfur compounds from inorganic ones, sulfate assimilation in plants is important for the global sulfur cycle.


Current Opinion in Plant Biology | 2017

Metabolic changes sustain the plant life in low-sulfur environments

Akiko Maruyama-Nakashita

Plants assimilate inorganic sulfate into various organic sulfur (S) compounds, which contributes to the global sulfur cycle in the environment as well as the nutritional supply of this essential element to animals. Plants, to sustain their lives, adapt the flow of their S metabolism to respond to external S status by activating S assimilation and catabolism of stored S compounds, and by repressing the synthesis of secondary S metabolites like glucosinolates. The molecular mechanism of this response has been gradually revealed, including the discovery of several regulatory proteins and enzymes involved in S deficiency responses. Recent progress in this research area and the remaining issues are reviewed here.


Plant Signaling & Behavior | 2017

Plants prioritize phytochelatin synthesis during cadmium exposure even under reduced sulfate uptake caused by the disruption of SULTR1;2

Chisato Yamaguchi; Naoko Ohkama-Ohtsu; Takuro Shinano; Akiko Maruyama-Nakashita

ABSTRACT Glutathione and phytochelatins are sulfur containing compounds playing an important role in cadmium (Cd) detoxification. We examined the Cd-induced changes in the percentage of sulfur containing compounds to total sulfur in wild-type and sulfate transporter 1;2 knockout mutant, sel1–10. Cd treatment increased the proportion of sulfate and thiols in the total sulfur content. Among the thiols analyzed, the proportion of cysteine and glutathione were decreased by the Cd treatment and that of the phytochelatins were increased. Although the total sulfur content in sel1–10 was decreased compared with that in wild-type, the percentages of individual thiol in the total thiol content were similarly maintained between sel1–10 and wild-type, suggesting that plants tightly controlled the balance of each thiol under Cd treatment.


Archive | 2017

Molecular Mechanisms of Selenium Responses and Resistance in Plants

Masanori Tamaoki; Akiko Maruyama-Nakashita

Selenium (Se) is an essential nutrient for many organisms but is toxic at high levels. A better understanding of plant responses to Se is important to optimize the use of plants in alleviating dietary Se deficiency or for the cleanup of Se-polluted areas. Genetic analysis among accessions of Arabidopsis thaliana showed that several genes involved in sulfur (S) assimilation may be responsible for the differences in Se resistance and accumulation, and resistance to selenite and selenate may be regulated by different genes. Molecular and biochemical studies of non-accumulator plants revealed that defense responses mediated by phytohormones (such as ethylene, jasmonic acid, and salicylic acid) play an important role in acquiring Se resistance and accumulation. Production of these phytohormones is enhanced via signal pathways of reactive oxygen species (ROS), and the signal pathways of phytohormones act in a cooperative or antagonistic manner to induce stress and S-uptake and S-metabolic genes. In this chapter, the contribution of ROS and phytohormone signaling in the acquisition of Se resistance and accumulation in Se hyper-accumulator plants was discussed, and the application of Se-responsive genes to generate transgenic plants that can detect Se in the environment was also introduced.

Collaboration


Dive into the Akiko Maruyama-Nakashita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Watanabe-Takahashi

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoko Ohkama-Ohtsu

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideo Nakashita

Fukui Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge