Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiko Nagamachi is active.

Publication


Featured researches published by Akiko Nagamachi.


Cancer Cell | 2013

Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7.

Akiko Nagamachi; Hirotaka Matsui; Hiroya Asou; Yuko Ozaki; Daisuke Aki; Akinori Kanai; Keiyo Takubo; Toshio Suda; Takuro Nakamura; Linda Wolff; Hiroaki Honda; Toshiya Inaba

Monosomy 7 and interstitial deletion of 7q (-7/7q-) are well-recognized nonrandom chromosomal abnormalities frequently found among patients with myelodysplastic syndromes (MDSs) and myeloid leukemias. We previously identified candidate myeloid tumor suppressor genes (SAMD9, SAMD9-like = SAMD9L, and Miki) in the 7q21.3 subband. We established SAMD9L-deficient mice and found that SAMD9L(+/-) mice as well as SAMD9L(-/-) mice develop myeloid diseases resembling human diseases associated with -7/7q-. SAMD9L-deficient hematopoietic stem cells showed enhanced colony formation potential and in vivo reconstitution ability. SAMD9L localizes in early endosomes. SAMD9L-deficient cells showed delays in homotypic endosome fusion, resulting in persistence of ligand-bound cytokine receptors. These findings suggest that haploinsufficiency of SAMD9L and/or SAMD9 gene(s) contributes to myeloid transformation.


Molecular Cell | 2012

Poly-ADP Ribosylation of Miki by tankyrase-1 Promotes Centrosome Maturation

Yuko Ozaki; Hirotaka Matsui; Hiroya Asou; Akiko Nagamachi; Daisuke Aki; Hiroaki Honda; Shin’ichiro Yasunaga; Yoshihiro Takihara; Tadashi Yamamoto; Shunsuke Izumi; Miho Ohsugi; Toshiya Inaba

During prometaphase, dense microtubule nucleation sites at centrosomes form robust spindles that align chromosomes promptly. Failure of centrosome maturation leaves chromosomes scattered, as seen routinely in cancer cells, including myelodysplastic syndrome (MDS). We previously reported that the Miki (LOC253012) gene is frequently deleted in MDS patients, and that low levels of Miki are associated with abnormal mitosis. Here we demonstrate that Miki localizes to the Golgi apparatus and is poly(ADP-ribosyl)ated by tankyrase-1 during late G2 and prophase. PARsylated Miki then translocates to mitotic centrosomes and anchors CG-NAP, a large scaffold protein of the γ-tubulin ring complex. Due to impairment of microtubule aster formation, cells in which tankyrase-1, Miki, or CG-NAP expression is downregulated all show prometaphase disturbances, including scattered and lagging chromosomes. Our data suggest that PARsylation of Miki by tankyrase-1 is a key initial event promoting prometaphase.


Oncogene | 2010

Identification of Zfp521 / ZNF521 as a cooperative gene for E2A-HLF to develop acute B-lineage leukemia

Norimasa Yamasaki; Kazuko Miyazaki; Akiko Nagamachi; Richard Koller; Hideaki Oda; Masaki Miyazaki; Takaaki Sasaki; Zen-ichiro Honda; Linda Wolff; Toshiya Inaba; Hiroaki Honda

E2A-hepatic leukemia factor (HLF) is a chimeric protein found in B-lineage acute lymphoblastic leukemia (ALL) with t(17;19). To analyze the leukemogenic process and to create model mice for t(17;19)-positive leukemia, we generated inducible knock-in (iKI) mice for E2A-HLF. Despite the induced expression of E2A-HLF in the hematopoietic tissues, no disease was developed during the long observation period, indicating that additional gene alterations are required to develop leukemia. To elucidate this process, E2A-HLF iKI and control littermates were subjected to retroviral insertional mutagenesis. Virus infection induced acute leukemias in E2A-HLF iKI mice with higher morbidity and mortality than in control mice. Inverse PCR detected three common integration sites specific for E2A-HLF iKI leukemic mice, which induced overexpression of zinc-finger transcription factors: growth factor independent 1 (Gfi1), zinc-finger protein subfamily 1A1 isoform a (Zfp1a1, also known as Ikaros) and zinc-finger protein 521 (Zfp521). Interestingly, tumors with Zfp521 integration exclusively showed B-lineage ALL, which corresponds to the phenotype of human t(17;19)-positive leukemia. In addition, ZNF521 (human counterpart of Zfp521) was found to be overexpressed in human leukemic cell lines harboring t(17;19). Moreover, both iKI for E2A-HLF and transgenic for Zfp521 mice frequently developed B-lineage ALL. These results indicate that a set of transcription factors promote leukemic transformation of E2A-HLF-expressing hematopoietic progenitors and suggest that aberrant expression of Zfp521/ZNF521 may be clinically relevant to t(17;19)-positive B-lineage ALL.


Leukemia | 2015

SETBP1 Mutations Drive Leukemic Transformation in ASXL1-Mutated MDS

Daichi Inoue; Jiro Kitaura; Hirotaka Matsui; Hsin-An Hou; Wen-Chien Chou; Akiko Nagamachi; Kimihito C. Kawabata; Katsuhiro Togami; Reina Nagase; Sayuri Horikawa; Makoto Saika; Jean-Baptiste Micol; Yasutaka Hayashi; Yuka Harada; Hironori Harada; Toshiya Inaba; Hwei-Fang Tien; Omar Abdel-Wahab; Toshio Kitamura

Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.


Oncogene | 2015

-7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity.

Hiroaki Honda; Akiko Nagamachi; Toshiya Inaba

The recurrence of chromosomal abnormalities in a specific subtype of cancer strongly suggests that dysregulated gene expression in the corresponding region has a critical role in disease pathogenesis. −7/7q−, defined as the entire loss of chromosome 7 and partial deletion of its long arm, is among the most frequently observed chromosomal aberrations in myeloid-lineage hematopoietic malignancies such as myelodysplastic syndrome and acute myeloid leukemia, particularly in patients treated with cytotoxic agents and/or irradiation. Tremendous efforts have been made to clarify the molecular mechanisms underlying the disease development, and several possible candidate genes have been cloned. However, the study is still underway, and the entire nature of this syndrome is not completely understood. In this review, we focus on the attempts to identify commonly deleted regions in patients with −7/7q−; isolate the candidate genes responsible for disease development, cooperative genes and the factors affecting disease prognosis; and determine effective and potent therapeutic approaches. We also refer to the possibility that the accumulation of multiple gene haploinsufficiency, rather than the loss of a single tumor suppressor gene, may contribute to the development of diseases with large chromosomal deletions such as −7/7q−.


PLOS ONE | 2014

Acquired Deficiency of A20 Results in Rapid Apoptosis, Systemic Inflammation, and Abnormal Hematopoietic Stem Cell Function

Akiko Nagamachi; Yuichiro Nakata; Takeshi Ueda; Norimasa Yamasaki; Yasuhiro Ebihara; Kohichiro Tsuji; Zen-ichiro Honda; Keiyo Takubo; Toshio Suda; Hideaki Oda; Toshiya Inaba; Hiroaki Honda

A20 is a negative regulator of NF-κB, and mutational loss of A20 expression is involved in the pathogenesis of autoimmune diseases and B-cell lymphomas. To clarify the role of A20 in adult hematopoiesis, we generated conditional A20 knockout mice (A20(flox/flox) ) and crossed them with Mx-1Cre (MxCre (+)) and ERT2Cre (ERT2Cre (+)) transgenic mice in which Cre is inducibly activated by endogenous interferon and exogenous tamoxifen, respectively. A20(flox/flox) MxCre (+) (A20Mx) mice spontaneously exhibited myeloid proliferation, B cell apoptosis, and anemia with overproduction of pro-inflammatory cytokines. Bone marrow transplantation demonstrated that these changes were caused by hematopoietic cells. NF-κB was constitutively activated in A20Mx hematopoietic stem cells (HSCs), which caused enhanced cell cycle entry and impaired repopulating ability. Tamoxifen stimulation of A20(flox/flox) ERT2Cre (+) (A20ERT2) mice induced fulminant apoptosis and subsequent myeloproliferation, lymphocytopenia, and progressive anemia with excessive production of pro-inflammatory cytokines, as observed in A20Mx mice. These results demonstrate that A20 plays essential roles in the homeostasis of adult hematopoiesis by preventing apoptosis and inflammation. Our findings provide insights into the mechanism underlying A20 dysfunction and human diseases in which A20 expression is impaired.


Journal of Biological Chemistry | 2012

Role of Pin1 Protein in the Pathogenesis of Nonalcoholic Steatohepatitis in a Rodent Model

Yusuke Nakatsu; Yuichiro Otani; Hideyuki Sakoda; Jun Zhang; Ying Guo; Hirofumi Okubo; Akifumi Kushiyama; Midori Fujishiro; Takako Kikuch; Toshiaki Fukushima; Haruya Ohno; Yoshihiro Tsuchiya; Hideaki Kamata; Akiko Nagamachi; Toshiya Inaba; Fusanori Nishimura; Hideki Katagiri; Shinichiro Takahashi; Hiroki Kurihara; Takafumi Uchida; Tomoichiro Asano

Background: NASH is a disease characterized by fat accumulation and chronic inflammation in the liver. Results: Pin1 expression was increased in NASH model mouse livers. Pin1 KO mice were resistant to NASH development. Conclusion: Pin1 plays critical roles in NASH development. Significance: A Pin1 inhibitor might be a novel agent for treating NASH. Nonalcoholic steatohepatitis (NASH) is a disorder characterized by simultaneous fat accumulation and chronic inflammation in the liver. In this study, Pin1 expression was revealed to be markedly increased in the livers of mice with methionine choline-deficient (MCD) diet-induced NASH, a rodent model of NASH. In addition, Pin1 KO mice were highly resistant to MCD-induced NASH, based on a series of data showing simultaneous fat accumulation, chronic inflammation, and fibrosis in the liver. In terms of Pin1-induced fat accumulation, it was revealed that the expression levels of peroxisome proliferator-activated receptor α and its target genes were higher in the livers of Pin1 KO mice than in controls. Thus, resistance of Pin1 KO mice to hepatic steatosis is partially attributable to the lack of Pin1-induced down-regulation of peroxisome proliferator-activated receptor α, although multiple other mechanisms are apparently involved. Another mechanism involves the enhancing effect of hematopoietic Pin1 on the expressions of inflammatory cytokines such as tumor necrosis factor and monocyte chemoattractant protein 1 through NF-κB activation, eventually leading to hepatic fibrosis. Finally, to distinguish the roles of hematopoietic or nonhematopoietic Pin1 in NASH development, mice lacking Pin1 in either nonhematopoietic or hematopoietic cells were produced by bone marrow transplantation between wild-type and Pin1 KO mice. The mice having nonhematopoietic Pin1 exhibited fat accumulation without liver fibrosis on the MCD diet. Thus, hepatic Pin1 appears to be directly involved in the fat accumulation in hepatocytes, whereas Pin1 in hematopoietic cells contributes to inflammation and fibrosis. In summary, this is the first study to demonstrate that Pin1 plays critical roles in NASH development. This report also raises the possibility that hepatic Pin1 inhibition to the appropriate level might provide a novel therapeutic strategy for NASH.


Cancer Science | 2009

Haploinsufficiency and acquired loss of Bcl11b and H2AX induces blast crisis of chronic myelogenous leukemia in a transgenic mouse model.

Akiko Nagamachi; Norimasa Yamasaki; Kazuko Miyazaki; Hideaki Oda; Masaki Miyazaki; Zen-ichiro Honda; Ryo Kominami; Toshiya Inaba; Hiroaki Honda

Chronic myelogenous leukemia (CML) is a hematological malignancy that begins as indolent chronic phase (CP) but inevitably progresses to fatal blast crisis (BC). p210BCR/ABL, a chimeric protein with enhanced kinase activity, initiates CML CP, and additional genetic alterations account for progression to BC, but the precise mechanisms underlying disease evolution are not fully understood. In the present study, we investigated the possible contribution of dysfunction of Bcl11b, a zinc‐finger protein required for thymocyte differentiation, and of H2AX, a histone protein involved in DNA repair, to the transition from CML CP to BC. For this purpose, we crossed CML CP‐exhibiting p210BCR/ABL transgenic (BAtg/–) mice with Bcl11b heterozygous (Bcl11b+/–) mice and H2AX heterozygous (H2AX+/–) mice. Interestingly, p210BCR/ABL transgenic, Bcl11b heterozygous (BAtg/–Bcl11b+/–) mice and p210BCR/ABL transgenic, H2AX heterozygous (BAtg/–H2AX+/–) mice frequently developed CML BC with T‐cell phenotype and died in a short period. In addition, whereas p210BCR/ABL was expressed in all of the leukemic tissues, the expression of Bcl11b and H2AX was undetectable in several tumors, which was attributed to the loss of the residual normal allele or the lack of mRNA expression. These results indicate that Bcl11b and H2AX function as tumor suppressor and that haploinsufficiency and acquired loss of these gene products cooperate with p210BCR/ABL to develop CML BC. (Cancer Sci 2009; 100: 1219–1226)


Scientific Reports | 2016

Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice.

Hirofumi Okubo; Akifumi Kushiyama; Hideyuki Sakoda; Yusuke Nakatsu; Masaki Iizuka; Naoyuki Taki; Midori Fujishiro; Toshiaki Fukushima; Hideaki Kamata; Akiko Nagamachi; Toshiya Inaba; Fusanori Nishimura; Hideki Katagiri; Takashi Asahara; Yasuto Yoshida; Osamu Chonan; Jeffery Encinas; Tomoichiro Asano

Resistin-like molecule β (RELMβ) reportedly has multiple functions including local immune responses in the gut. In this study, we investigated the possible contribution of RELMβ to non-alcoholic steatohepatitis (NASH) development. First, RELMβ knock-out (KO) mice were shown to be resistant to methionine-choline deficient (MCD) diet-induced NASH development. Since it was newly revealed that Kupffer cells in the liver express RELMβ and that RELMβ expression levels in the colon and the numbers of RELMβ-positive Kupffer cells were both increased in this model, we carried out further experiments using radiation chimeras between wild-type and RELMβ-KO mice to distinguish between the contributions of RELMβ in these two organs. These experiments revealed the requirement of RELMβ in both organs for full manifestation of NASH, while deletion of each one alone attenuated the development of NASH with reduced serum lipopolysaccharide (LPS) levels. The higher proportion of lactic acid bacteria in the gut microbiota of RELMβ-KO than in that of wild-type mice may be one of the mechanisms underlying the lower serum LPS level the former. These data suggest the contribution of increases in RELMβ in the gut and Kupffer cells to NASH development, raising the possibility of RELMβ being a novel therapeutic target for NASH.


Journal of Biological Chemistry | 2011

The dynactin complex maintains the integrity of metaphasic centrosomes to ensure transition to anaphase.

Yuko Ozaki; Hirotaka Matsui; Akiko Nagamachi; Hiroya Asou; Daisuke Aki; Toshiya Inaba

The dynactin complex is required for activation of the dynein motor complex, which plays a critical role in various cell functions including mitosis. During metaphase, the dynein-dynactin complex removes spindle checkpoint proteins from kinetochores to facilitate the transition to anaphase. Three components (p150Glued, dynamitin, and p24) compose a key portion of the dynactin complex, termed the projecting arm. To investigate the roles of the dynactin complex in mitosis, we used RNA interference to down-regulate p24 and p150Glued in human cells. In response to p24 down-regulation, we observed cells with delayed metaphase in which chromosomes frequently align abnormally to resemble a “figure eight,” resulting in cell death. We attribute the figure eight chromosome alignment to impaired metaphasic centrosomes that lack spindle tension. Like p24, RNA interference of p150Glued also induces prometaphase and metaphase delays; however, most of these cells eventually enter anaphase and complete mitosis. Our findings suggest that although both p24 and p150Glued components of the dynactin complex contribute to mitotic progression, p24 also appears to play a role in metaphase centrosome integrity, helping to ensure the transition to anaphase.

Collaboration


Dive into the Akiko Nagamachi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Wolff

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge