Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiko Yabuuchi is active.

Publication


Featured researches published by Akiko Yabuuchi.


Cloning and Stem Cells | 2003

Effect of Demecolcine and Nocodazole on the Efficiency of Chemically Assisted Removal of Chromosomes and the Developmental Potential of Nuclear Transferred Porcine Oocytes

Masahiro Kawakami; Tetsuya Tani; Akiko Yabuuchi; Tatsuya Kobayashi; Hiroshi Murakami; Tatsuya Fujimura; Yoko Kato; Yukio Tsunoda

Brief treatment of metaphase II (MII) stage porcine oocytes with 0.4 microg/mL demecolcine in the presence of 0.05 M sucrose produces a membrane protrusion that contains a condensed chromosome mass. The present study examined the optimal conditions for demecolcine and nocodazole treatment in chemically assisted removal of chromosomes. When matured oocytes were treated with 0.1-0.4 microg/mL demecolcine for 60 min or with 0.4 microg/mL demecolcine for 30 min or 3 microg/mL nocodazole for 30 or 60 min, more than 70% of oocytes had a membrane protrusion containing condensed chromosomes were located. There was no difference in the in vitro developmental potential of enucleated oocytes assisted by 0.1 and 0.4 microg/mL demecolcine or 3 microg/mL nocodazole that received porcine somatic cells. After transfer to 10 recipients, however, two of six recipients that received demecolcine-treated enucleated eggs produced four healthy cloned piglets, but none of the four recipients of nocodazole-treated enucleated eggs produced piglets. Further studies are required to increase the successful development to term because the proportion of live piglets was low (4/2, 672, 0.15%).


Laboratory Investigation | 2013

The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function

Y. Takehara; Akiko Yabuuchi; Kenji Ezoe; Tomoko Kuroda; Rie Yamadera; Chiaki Sano; Nana Murata; Takuya Aida; Ken Nakama; F. Aono; Naoki Aoyama; Keiich Kato; Osamu Kato

The clinical application of human adipose-derived mesenchymal stem cells (MSCs) as treatment for intractable diseases or traumatic tissue damage has attracted attention. To address the ability of reactivating injured ovaries, we prepared a rat model with damaged ovaries by using an anticancer agent, cyclophosphamide (CTX). We then investigated the restorative effects on ovarian function and the safety of adipose-derived MSCs (A-MSCs). MSCs were shown to be capable of inducing angiogenesis and restoring the number of ovarian follicles and corpus lutea in ovaries. No deformities, tumor formation or deaths were observed in F1 and F2 rats, indicating that the local injection of MSCs into the ovary did not have any obvious side effects. In addition, the localization of the Y chromosome was investigated using the fluorescent in situ hybridization method by injecting male A-MSCs into the ovaries; as a result, the Y chromosomes were localized not in the follicles, but in the thecal layers. ELISA revealed that A-MSCs secreted higher levels of vascular endothelial cell growth factor (VEGF), insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) than tail fibroblast cells. Quantitative real-time PCR and immunohistochemistry showed that higher expression levels of VEGF, IGF-1 and HGF were observed in CTX-treated ovaries after A-MSC transplantation. These findings suggest that MSCs may have a role in restoring damaged ovarian function and could be useful for regenerative medicine.


Biochimica et Biophysica Acta | 2012

Prevention of mitochondrial disease inheritance by assisted reproductive technologies: Prospects and challenges

Akiko Yabuuchi; Zeki Beyhan; Noriko Kagawa; Chiemi Mori; Kenji Ezoe; K. Kato; F. Aono; Y. Takehara; Osamu Kato

BACKGROUND Mitochondrial diseases are caused by the mutations in both nuclear and mitochondrial DNA (mtDNA) and the treatment options for patients who have mitochondrial disease are rather limited. Mitochondrial DNA is transmitted maternally and does not follow a Mendelian pattern of inheritance. Since reliable and predictable detection of mitochondrial disorders in embryos and oocytes is unattainable at present, an alternative approach to this problem has emerged as partial or complete replacement of mutated mtDNA with the wild-type mtDNA through embryo manipulations. Currently available methods to achieve this goal are germinal vesicle transfer (GVT), metaphase chromosome transfer (CT), pronuclear transfer (PNT) and ooplasmic transfer (OT). SCOPE OF REVIEW We summarize the state of the art regarding these technologies and discuss the implications of recent advances in the field for clinical practice. MAJOR CONCLUSIONS CT, PNT and GVT techniques hold promise to prevent transmission of mutant mtDNA through ARTs. However, it is clear that mtDNA heteroplasmy in oocytes, embryos and offspring produced by these methods remains as a legitimate concern. GENERAL SIGNIFICANCE New approaches to eliminate transmission of mutant mtDNA certainly need to be explored in order to bring the promise of clinical application for the treatment of mitochondrial disorders. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.


Reproductive Biomedicine Online | 2015

Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies

Chiemi Mori; Akiko Yabuuchi; Kenji Ezoe; Nana Murata; Yuko Takayama; Tadashi Okimura; Kazuo Uchiyama; Kei Takakura; Hiroyuki Abe; Keiko Wada; Takashi Okuno; T. Kobayashi; Keiichi Kato

Hydroxypropyl cellulose (HPC) was investigated as a replacement for serum substitute supplement (SSS) for use in cryoprotectant solutions for embryo vitrification. Mouse blastocysts from inbred (n = 1056), hybrid (n = 128) strains, and 121 vitrified blastocysts donated by infertile patients (n = 102) were used. Mouse and human blastocysts, with or without zona pellucida, were vitrified and warmed in either 1% or 5% HPC or in 5% or 20% SSS-supplemented media using the Cryotop (Kitazato BioPharma Co. Ltd, Fuji, Japan) method, and the survival and oxygen consumption rates were assessed. Viscosity of each vitrification solution was compared. Survival rates of mouse hybrid blastocysts and human zona pellucida-intact blastocysts were comparable among the groups. Mouse and human zona pellucida-free blastocysts, which normally exhibit poor cryoresistance, showed significantly higher survival rates in 5% HPC than 5% SSS (P < 0.05). The 5% HPC-supplemented vitrification solution showed a significantly higher viscosity (P < 0.05). The blastocysts were easily detached from the Cryotop strip during warming when HPC-supplemented vitrification solution was used. The oxygen consumption rates were similar between non-vitrified and 5% HPC groups. The results suggest possible use of HPC for supplementation of cryoprotectant solutions and provide useful information to improve vitrification protocols.


Reproductive Biomedicine Online | 2014

Women's age and embryo developmental speed accurately predict clinical pregnancy after single vitrified-warmed blastocyst transfer

Keiichi Kato; Satoshi Ueno; Akiko Yabuuchi; Kazuo Uchiyama; Takashi Okuno; T. Kobayashi; Tomoya Segawa; S. Teramoto

The aim of this study was to establish a simple, objective blastocyst grading system using womens age and embryo developmental speed to predict clinical pregnancy after single vitrified-warmed blastocyst transfer. A 6-year retrospective cohort study was conducted in a private infertility centre. A total of 7341 single vitrified-armed blastocyst transfer cycles were included, divided into those carried out between 2006 and 2011 (6046 cycles) and 2012 (1295 cycles). Clinical pregnancy rate, ongoing pregnancy rate and delivery rates were stratified by womens age (<35, 35-37, 38-39, 40-41, 42-45 years) and time to blastocyst expansion (<120, 120-129, 130-139, 140-149, >149 h) as embryo developmental speed. In all the age groups, clinical pregnancy rate, ongoing pregnancy rate and delivery rates decreased as the embryo developmental speed decreased (P < 0.0001). A simple five-grade score based on womens age and embryo developmental speed was determined by actual clinical pregnancy rates observed in the 2006-2011 cohort. Subsequently, the novel grading score was validated in the 2012 cohort (1295 cycles), finding an excellent association. In conclusion, we established a novel blastocyst grading system using womens age and embryo developmental speed as objective parameters.


Reproductive Biology | 2014

Long-term adverse effects of cyclophosphamide on follicular growth and angiogenesis in mouse ovaries.

Kenji Ezoe; Nana Murata; Akiko Yabuuchi; Takashi Okuno; T. Kobayashi; Osamu Kato; K. Kato

The adverse effects of the anti-cancer agent cyclophosphamide (CTX) on follicular growth and ovarian angiogenesis were investigated in mice. CTX treatment irreversibly induced a loss of follicles through apoptosis and decreased microvascularization of the corpora lutea and follicles in a dose-dependent manner. Our findings demonstrated that CTX adversely affected the ovaries indicating the need to support an awareness of fertility preservation before chemotherapy is initiated.


Molecular Human Reproduction | 2014

Ovarian stimulation using human chorionic gonadotrophin impairs blastocyst implantation and decidualization by altering ovarian hormone levels and downstream signaling in mice

Kenji Ezoe; Takiko Daikoku; Akiko Yabuuchi; Nana Murata; Hiroomi Kawano; Takashi Abe; Takashi Okuno; T. Kobayashi; K. Kato

Ovarian stimulation induced by follicle-stimulating hormone and human chorionic gonadotrophin (hCG) is commonly used in assisted reproductive technology to increase embryo production. However, recent clinical and animal studies have shown that ovarian stimulation disrupts endometrial function and embryo development and adversely affects pregnancy outcomes. How ovarian stimulation impairs pregnancy establishment and the precise mechanisms by which this stimulation reduces the chances of conception remain unclear. In this study, we first demonstrated that ovarian stimulation using hCG alone impairs implantation, decidualization and fetal development of mice by generating abnormal ovarian hormone levels. We also showed that ovarian hormone levels were altered because of changes in the levels of the enzymes involved in their synthesis in the follicles and corpora lutea. Furthermore, we determined that anomalous ovarian hormone secretion induced by ovarian stimulation alters the spatiotemporal expression of progesterone receptors and their downstream genes, especially in the uterine epithelium. Epithelial estrogenic signaling and cell proliferation were promoted on the day of implantation in stimulated mice and these changes led to the failure of uterine transition from the prereceptive to the receptive state. Collectively, our findings indicate that ovarian stimulation using hCG induces an imbalance in steroid hormone secretion, which causes a failure of the development of uterine receptivity and subsequent implantation and decidualization by altering the expression of steroid receptors and their downstream signaling associated with embryo implantation.


PLOS ONE | 2015

Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation

Kenji Ezoe; Akiko Yabuuchi; Tetsuya Tani; Chiemi Mori; Tetsuya Miki; Yuko Takayama; Zeki Beyhan; Yoko Kato; Takashi Okuno; T. Kobayashi; Keiichi Kato

Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV) oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP) modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK) or 3-isobutyl-1-methylxanthine (IBMX) to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF) activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.


Journal of Experimental Zoology | 2001

Nuclear transfer of mouse follicular epithelial cells pretreated with spermine, protamine, or putrescine.

Akiko Yabuuchi; Tetsuya Tani; Yoko Kato; Yukio Tsunoda

The in vitro and in vivo developmental potential of nuclear transferred embryos receiving follicular epithelial cells pretreated with spermine (5 and 20 mM), protamine (0.25 and 25 mg/ml), or putrescine (1 and 100 microg/ml) at room and reduced temperatures was examined in the mouse. The pretreated donor cells were first fused with enucleated oocytes, and then nuclei from reconstituted eggs at the two-cell stage were fused with the enucleated fertilized two-cell embryos. The proportion of reconstituted embryos that developed into blastocysts was not significantly different among groups. After transfer to recipients, implantation rates were not different between groups and fetuses were obtained in protamine- and spermine-treated groups as well as in control groups. These results demonstrate that pretreatment of nuclear donor cells with spermine, protamine, or putrescine does not enhance the developmental potential in vitro or in vivo in the mouse. J. Exp. Zool. 289:208-212, 2001.


Reproductive Biomedicine Online | 2018

Cryostorage duration does not affect pregnancy and neonatal outcomes: a retrospective single-centre cohort study of vitrified–warmed blastocysts

Satoshi Ueno; Kazuo Uchiyama; Tomoko Kuroda; Akiko Yabuuchi; Kenji Ezoe; Tadashi Okimura; Takashi Okuno; T. Kobayashi; K. Kato

A retrospective cohort study of 8736 autologous single vitrified-warmed blastocyst transfer cycles was conducted in a single centre to investigate the effect of cryostorage on clinical and neonatal outcomes. Cryostorage duration was classified into three groups: (A) 0-2 months (n = 4702); (B) 2-13 months (n = 2853) and (C) 13-97 months (n = 1181). Blastocysts were vitrified using the Cryotop method. No significant differences were observed in live birth rates: (A) 37.3%; (B) 34.9%; (C) (35.2%). Gestational period was significantly shorter in group C: (A) 38.7 ± 1.8; (B) 38.6 ± 1.6; (C) 38.1 ± 1.7; P < 0.05. This was clinically unimportant as the average gestational age was more than 38 weeks. No significant differences between groups were observed in birth weight: (A) 3060 ± 455 g; (B) 3052 ± 449 g; (C) 2992 ± 445 g, or congenital malformation rates: (A) 2.2%; (B) 1.9%; (C) 1.8%. The limitation of this study was that maximum storage duration was 8 years; most blastocysts were in cryostorage for much shorter periods. Long-term storage of blastocysts that are vitrified using an open device vitrification system has no negative effect on pregnancy and neonatal outcomes.

Collaboration


Dive into the Akiko Yabuuchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Kato

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge