Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiko Yusa is active.

Publication


Featured researches published by Akiko Yusa.


Cancer Research | 2010

Epigenetic Silencing of the Sulfate Transporter Gene DTDST Induces Sialyl Lewisx Expression and Accelerates Proliferation of Colon Cancer Cells

Akiko Yusa; Keiko Miyazaki; Naoko Kimura; Mineko Izawa; Reiji Kannagi

Colon cancer cells express the carbohydrate determinant sialyl Lewis(x), while they exhibit markedly decreased the expression of its sulfated derivative, sialyl 6-sulfo Lewis(x). In contrast, normal colonic epithelial cells strongly express sialyl 6-sulfo Lewis(x), but they virtually do not express sialyl Lewis(x). Impaired sulfation was therefore suggested to occur during the course of malignant transformation of colonic epithelial cells and was assumed to be responsible for the increased sialyl Lewis(x) expression in cancers. To elucidate the molecular biological background of the impaired sulfation in cancers, we studied the expression levels of mRNA for 6-O-sulfotransferase isoenzymes, PAPS synthases and transporters, and a cell membrane sulfate transporter, DTDST, in cancer tissues. The most striking decrease in cancer cells compared with nonmalignant epithelial cells was noted in the transcription of the DTDST gene (P = 0.0000014; n = 20). Most cultured colon cancer cells had a diminished DTDST transcription, which was restored when cultured with histone deacetylase inhibitors. Suppression of DTDST transcription under the control of a tet-off inducible promoter resulted in increased sialyl Lewis(x) expression and reduced sialyl 6-sulfo Lewis(x) expression. Unexpectedly, the growth rate of the cancer cells was markedly enhanced when transcription of DTDST was suppressed. These results show that the decrease in the transcription of the sulfate transporter gene is the major cause of decreased expression of sialyl 6-sulfo Lewis(x) and increased expression of sialyl Lewis(x) in colon cancers. The results also suggest that the diminished DTDST expression is closely related to enhanced proliferation of cancer cells.


Cancer Science | 2010

Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: Clues in the ongoing search for new tumor markers

Reiji Kannagi; Keiichiro Sakuma; Keiko Miyazaki; Khe-Ti Lim; Akiko Yusa; Jun Yin; Mineko Izawa

(Cancer Sci 2010; 101: 586–593)


PLOS ONE | 2014

Development of a new rapid isolation device for circulating tumor cells (CTCs) using 3D palladium filter and its application for genetic analysis.

Akiko Yusa; Makoto Toneri; Taisuke Masuda; Seiji Ito; Shuhei Yamamoto; Mina Okochi; Naoto Kondo; Hiroji Iwata; Yasushi Yatabe; Yoshiyuki Ichinosawa; Seichin Kinuta; Eisaku Kondo; Hiroyuki Honda; Fumihito Arai; Hayao Nakanishi

Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.


Journal of Biological Chemistry | 2006

N-linked oligosaccharides on chondroitin 6-sulfotransferase-1 are required for production of the active enzyme, Golgi localization, and sulfotransferase activity toward keratan sulfate.

Akiko Yusa; Ken Kitajima; Osami Habuchi

We have shown previously that purified chondroitin 6-sulfotransferase-1 (C6ST-1) was a glycoprotein abundant in N-linked oligosaccharides and could sulfate both chondroitin (C6ST activity) and keratan sulfate (KSST activity); however, functional roles of the N-glycans have remained unclear. In the present study, we show essential roles of N-glycans attached to C6ST-1 in the generation of the active enzyme and in its KSST activity. Treatment with tunicamycin of COS-7 cells transfected with C6ST-1 cDNA totally abolished production of the active C6ST-1. A nearly complete removal of N-glycans of the recombinant C6ST-1 by peptide N-glycosidase F increased the C6ST activity but decreased the KSST activity. Among six potential N-glycosylation sites, deletion of the fourth or sixth site from the amino terminus inhibited production of the active C6ST-1, whereas deletion of the fifth site resulted in a marked loss of the KSST activity. Wild-type recombinant C6ST-1 showed a typical Golgi localization, whereas M-4 recombinant C6ST-1, in which the fourth N-glycosylation site was deleted, colocalized with calnexin, an endoplasmic reticulum-resident protein. Unlike wildtype recombinant C6ST-1, M-4 recombinant C6ST-1 showed a weak affinity toward wheat germ agglutinin and was converted completely to the nonglycosylated form by endoglycosidase H. These observations suggest that N-glycan attached to the fourth N-glycosylation site may function in the proper processing of N-glycans required for the Golgi localization, thereby causing the production of the active C6ST-1, and that N-glycan attached to the fifth N-glycosylation site may contribute to the KSST activity of C6ST-1.


Biochemical Journal | 2005

N-linked oligosaccharides are required to produce and stabilize the active form of chondroitin 4-sulphotransferase-1

Akiko Yusa; Ken Kitajima; Osami Habuchi

C4ST-1 (chondroitin 4-sulphotransferase-1) transfers sulphate to position 4 of N-acetylgalactosamine in chondroitin. We showed previously that purified C4ST-1 from the culture medium of rat chondrosarcoma cells was a glycoprotein containing approx. 35% N-linked oligosaccharides. In the present paper, we investigated the functional role of the N-linked oligosaccharides attached to C4ST-1. We found that (i) treatment of recombinant C4ST-1 with peptide N-glycosidase F caused a marked decrease in activity, (ii) production of the active form of C4ST-1 by COS-7 cells transfected with cDNA of C4ST-1 was inhibited by tunicamycin, (iii) deletion of the N-glycosylation site located at the C-terminal region of C4ST-1 abolished activity, (iv) attachment of a single N-glycan at the C-terminal region supported production of the active form of C4ST-1, but the resulting recombinant enzyme was much more unstable at 37 degrees C than the control recombinant protein, and (v) truncation of C-terminal region up to the N-glycosylation site at the C-terminal region resulted in total loss of activity. These observations strongly suggest that N-linked oligosaccharides attached to C4ST-1 contribute to the production and stability of the active form of C4ST-1. In addition, the N-linked oligosaccharide at the C-terminal region appears to affect the glycosylation pattern of recombinant C4ST; a broad protein band of the wildtype protein resulting from microheterogeneity of N-linked oligosaccharides disappeared and four discrete protein bands with different numbers of N-linked oligosaccharides appeared when the N-linked oligosaccharide at the C-terminal region was deleted.


Glycoconjugate Journal | 2008

Generation and characterization of a series of monoclonal antibodies that specifically recognize (HexA(±2S)-GlcNAc)n epitopes in heparan sulfate

Kiyoshi Suzuki; Koji Yamamoto; Yutaka Kariya; Hiroshi Maeda; Takeshi Ishimaru; Shuichi Miyaura; Masahiro Fujii; Akiko Yusa; Eun Ji Joo; Koji Kimata; Reiji Kannagi; Yeong Shik Kim; Mamoru Kyogashima

Five monoclonal antibodies AS17, 22, 25, 38 and 48, a single monoclonal antibody ACH55, and three monoclonal antibodies NAH33, 43, 46, that recognize acharan sulfate (IdoA2S-GlcNAc)n, acharan (IdoA-GlcNAc)n and N-acetyl-heparosan (GlcA-GlcNAc)n, respectively, were generated by immunization of mice with keyhole limpet hemocyanin-conjugated polysaccharides. Specificity tests were performed using a panel of biotinylated GAGs that included chemically modified heparins. Each antibody bound avidly to the immunized polysaccharide, but did not bind to chondroitin sulfates, keratan sulfate, chondroitin nor hyaluronic acid. AS antibodies did not bind to heparan sulfate or heparin, but bound to 6-O-desulfated, N-desulfated and re-N-acetylated heparin to varying degrees. ACH55 bound to tri-desulfated and re-N-acetylated heparin but hardly bound to other modified heparins. NAH antibodies did not bind to heparin and modified heparins but bound to heparan sulfate to varying degrees. NAH43 and NAH46 also bound to partially N-de-acetylated N-acetyl-heparosan. Immunohistochemical analysis in rat cerebella was performed with the antibodies. While NAH46 stained endothelia, where heparan sulfate is typically present, neither ACH55 nor AS25 stained endothelia. On the contrary ACH55 and AS25 stained the molecular layer of the rat cerebella. Furthermore, ACH55 specifically stained Purkinje cells. These results suggest that there is unordinary expression of IdoA2S-GlcNAc and IdoA-GlcNAc in specific parts of the nervous system.


Glycoconjugate Journal | 2010

Cytoplasmic expression of the JM403 antigen GlcA-GlcNH3+ on heparan sulfate glycosaminoglycan in mammary carcinomas—a novel proliferative biomarker for breast cancers with high malignancy

Masahiro Fujii; Akiko Yusa; Yukihiro Yokoyama; Toshio Kokuryo; Nobuyuki Tsunoda; Koji Oda; Masato Nagino; Tsuyoshi Ishimaru; Yoshie Shimoyama; Hirotoshi Utsunomiya; Hiroji Iwata; Yoshiko Itoh; Johbu Itoh; Reiji Kannagi; Mamoru Kyogashima

The expressions of heparan sulfate glycosaminoglycans (HSGAGs) in breast carcinoma specimens from 60 patients were immunohistochemically investigated using monoclonal antibodies (mAbs) that recognized different epitopes of the glycan structure. Cytoplasmic expression of GlcA-GlcNH3+ on HSGAG was detected in carcinomas at high frequency (58.3%) using mAb JM403, whereas it was almost undetectable in normal breast ducts. This cytoplasmic expression was confirmed using confocal laser scanning microscopy. The expression of JM403 antigen in invasive carcinomas significantly correlated with nuclear atypia score (p = 0.0004), mitotic counts score (p = 0.0018), nuclear grade (p = 0.0061) and the incidence of metastasis to axillary lymph nodes (p = 0.0061). Furthermore, its expression was significantly correlated with the Ki67-labeling index in 55 invasive carcinomas (p < 0.05) as well as in 26 non-invasive carcinomas (5 non-invasive carcinomas and 21 non-invasive carcinomas that were observed in individual invasive carcinomas) (p < 0.005). Interestingly, the JM403 antigen GlcA-GlcNH3+ was also expressed in the cytoplasm of normal crypt epithelial cells where Ki67 protein was expressed in the cell nuclei in the proliferative compartment of the human small intestines. To date, HSGAGs have generally been found to exist on cell surface membranes and in extracellular matrices as components of HS proteoglycans, and the negatively-charged sulfated domains on HSGAGs are considered to be important for their functions. However, our present findings indicate that the cytoplasmic expression of the JM403 antigen GlcA-GlcNH3+ on positively charged, non-sulfated HSGAG may be involved in cell proliferation and associated with increased degrees of malignancy. The unordinary carbohydrate antigen of GlcA-GlcNH3+ on HSGAGs recognized by mAb JM403 may represent a novel proliferative biomarker for highly malignant mammary carcinomas.


intelligent robots and systems | 2014

Cell isolation system for rare Circulating Tumor Cell

Taisuke Masuda; Sun Yilling; Song Won Eui; Miyako Niimi; Akiko Yusa; Hayao Nakanishi; Fumihito Arai

For molecular analysis of the rare cells, such as Circulating Tumor Cells (CTCs), the rare cells isolation from the suspension which contains large population of other cells on the single cells level is required. In this paper, we fabricated and demonstrated a cell isolation system for rare CTCs. We utilized the technique of convective self-assembly, which is a technique for depositing uniform onto the microfluidic device, to array single CTCs. Under the suspended cancer cells experiments, we demonstrated that by using this system, the collection efficiency of cells which could be deposited on the microfluidic device was 98.3% while the flow rate was 57.1 μl/min. This system will be conducive to single rare cells analysis because the deposited cells could be picked up by glass pipette easily.


Journal of Biological Chemistry | 2018

Distinct substrate specificities of human GlcNAc-6-sulfotransferases revealed by mass spectrometry–based sulfoglycomic analysis

Shin-Yi Yu; Cheng-Te Hsiao; Mineko Izawa; Akiko Yusa; Hiroji Ishida; Shigeo Nakamura; Hirokazu Yagi; Reiji Kannagi; Kay-Hooi Khoo

Sulfated glycans are known to be involved in several glycan-mediated cell adhesion and recognition pathways. Our mRNA transcript analyses on the genes involved in synthesizing GlcNAc-6-O–sulfated glycans in human colon cancer tissues indicated that GlcNAc6ST-2 (CHST4) is preferentially expressed in cancer cells compared with nonmalignant epithelial cells among the three known major GlcNAc-6-O-sulfotransferases. On the contrary, GlcNAc6ST-3 (CHST5) was only expressed in nonmalignant epithelial cells, whereas GlcNAc6ST-1 (CHST2) was expressed equally in both cancerous and nonmalignant epithelial cells. These results suggest that 6-O-sulfated glycans that are synthesized only by GlcNAc6ST-2 may be highly colon cancer–specific, as supported by immunohistochemical staining of cancer cells using the MECA-79 antibody known to be relatively specific to the enzymatic reaction products of GlcNAc6ST-2. By more precise MS-based sulfoglycomic analyses, we sought to further infer the substrate specificities of GlcNAc6STs via a definitive mapping of various sulfo-glycotopes and O-glycan structures expressed in response to overexpression of transfected GlcNAc6STs in the SW480 colon cancer cell line. By detailed MS/MS sequencing, GlcNAc6ST-3 was shown to preferentially add sulfate onto core 2–based O-glycan structures, but it does not act on extended core 1 structures, whereas GlcNAc6ST-1 prefers core 2–based O-glycans to extended core 1 structures. In contrast, GlcNAc6ST-2 could efficiently add sulfate onto both extended core 1– and core 2–based O-glycans, leading to the production of unique sulfated extended core 1 structures such as R-GlcNAc(6-SO3−)β1-3Galβ1–4GlcNAc(6-SO3−)β1–3Galβ1–3GalNAcα, which are good candidates to be targeted as cancer-specific glycans.


Archive | 2014

Device for isolating peripheral circulating tumor cells or rare cells, and method for isolating peripheral circulating tumor cells or rare cells

Hayao Nakanishi; Seiji Ito; Seichin Kinuta; Yoshiyuki Ichinosawa; Akiko Yusa; Hiroyuki Honda; Mina Okochi

Collaboration


Dive into the Akiko Yusa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamoru Kyogashima

Nihon Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge