Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akila Jayaraman is active.

Publication


Featured researches published by Akila Jayaraman.


Science | 2009

Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift.

Scott E. Hensley; Suman R. Das; Adam L. Bailey; Loren M. Schmidt; Heather D. Hickman; Akila Jayaraman; Karthik Viswanathan; Rahul Raman; Ram Sasisekharan; Jack R. Bennink; Jonathan W. Yewdell

Flus Tricky Tricks After vaccination against influenza A virus, single-point mutations are selected in hemagglutinin (the virus molecule that binds to sialic acid molecules on the surface of host cells) that escape neutralization by polyclonal antibody responses. Hensley et al. (p. 734) have discovered that in mice these mutations increased the viruss avidity for sialic acid. Amino acid substitutions that occur during reiterations of immune escape and avidity modulation can thus drive antigenic variation. This constant evolution of influenza viruses requires us to change vaccine components annually, and, for equine influenza, Park et al. (p. 726) show that as the match between virus and vaccine strains drifts apart with time, the probability of becoming infected and the length of the infectious period increase to the point where outbreaks occur. Nevertheless, even imperfect vaccines may be of benefit to a population because increasing the proportion of vaccinated individuals can supply enough herd immunity to offset a poor antigenic match, especially if used in conjunction with antiviral drugs. For humans, Yang et al. (p. 729, published online 10 September) estimate that the rate of transmission within U.S. households puts influenza A 2009 H1N1 (the current pandemic “swine flu”) in the higher range of transmissibility, compared to past seasonal and pandemic strains. Thus, to achieve mitigation this fall, children should be the first recipients of vaccine, followed by adults—aiming overall for 70% coverage of the population. Viruses escape antibody responses by changing surface protein structures to increase the strength of binding to host cells. Rapid antigenic evolution in the influenza A virus hemagglutinin precludes effective vaccination with existing vaccines. To understand this phenomenon, we passaged virus in mice immunized with influenza vaccine. Neutralizing antibodies selected mutants with single–amino acid hemagglutinin substitutions that increased virus binding to cell surface glycan receptors. Passaging these high-avidity binding mutants in naïve mice, but not immune mice, selected for additional hemagglutinin substitutions that decreased cellular receptor binding avidity. Analyzing a panel of monoclonal antibody hemagglutinin escape mutants revealed a positive correlation between receptor binding avidity and escape from polyclonal antibodies. We propose that in response to variation in neutralizing antibody pressure between individuals, influenza A virus evolves by adjusting receptor binding avidity via amino acid substitutions throughout the hemagglutinin globular domain, many of which simultaneously alter antigenicity.


Cell | 2013

Glycan receptor binding of the influenza A virus H7N9 hemagglutinin.

Kannan Tharakaraman; Akila Jayaraman; Rahul Raman; Karthik Viswanathan; Nathan W. Stebbins; Zachary Shriver; V. Sasisekharan; Ram Sasisekharan

The advent of H7N9 in early 2013 is of concern for a number of reasons, including its capability to infect humans, the lack of clarity in the etiology of infection, and because the human population does not have pre-existing immunity to the H7 subtype. Earlier sequence analyses of H7N9 hemagglutinin (HA) point to amino acid changes that predicted human receptor binding and impinge on the antigenic characteristics of the HA. Here, we report that the H7N9 HA shows limited binding to human receptors; however, should a single amino acid mutation occur, this would result in structural changes within the receptor binding site that allow for extensive binding to human receptors present in the upper respiratory tract. Furthermore, a subset of the H7N9 HA sequences demarcating coevolving amino acids appears to be in the antigenic regions of H7, which, in turn, could impact effectiveness of the current WHO-recommended prepandemic H7 vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Pathogenesis and transmission of swine origin A(H3N2)v influenza viruses in ferrets

Melissa B. Pearce; Akila Jayaraman; Claudia Pappas; Jessica A. Belser; Hui Zeng; Kortney M. Gustin; Taronna R. Maines; Xiangjie Sun; Rahul Raman; Nancy J. Cox; Ram Sasisekharan; Jacqueline M. Katz; Terrence M. Tumpey

Recent isolation of a novel swine-origin influenza A H3N2 variant virus [A(H3N2)v] from humans in the United States has raised concern over the pandemic potential of these viruses. Here, we analyzed the virulence, transmissibility, and receptor-binding preference of four A(H3N2)v influenza viruses isolated from humans in 2009, 2010, and 2011. High titers of infectious virus were detected in nasal turbinates and nasal wash samples of A(H3N2)v-inoculated ferrets. All four A(H3N2)v viruses possessed the capacity to spread efficiently between cohoused ferrets, and the 2010 and 2011 A(H3N2)v isolates transmitted efficiently to naïve ferrets by respiratory droplets. A dose-dependent glycan array analysis of A(H3N2)v showed a predominant binding to α2-6–sialylated glycans, similar to human-adapted influenza A viruses. We further tested the viral replication efficiency of A(H3N2)v viruses in a relevant cell line, Calu-3, derived from human bronchial epithelium. The A(H3N2)v viruses replicated in Calu-3 cells to significantly higher titers compared with five common seasonal H3N2 influenza viruses. These findings suggest that A(H3N2)v viruses have the capacity for efficient replication and transmission in mammals and underscore the need for continued public health surveillance.


PLOS ONE | 2011

Effect of D222G Mutation in the Hemagglutinin Protein on Receptor Binding, Pathogenesis and Transmissibility of the 2009 Pandemic H1N1 Influenza Virus

Jessica A. Belser; Akila Jayaraman; Rahul Raman; Claudia Pappas; Hui Zeng; Nancy J. Cox; Jacqueline M. Katz; Ram Sasisekharan; Terrence M. Tumpey

Influenza viruses isolated during the 2009 H1N1 pandemic generally lack known molecular determinants of virulence associated with previous pandemic and highly pathogenic avian influenza viruses. The frequency of the amino acid substitution D222G in the hemagglutinin (HA) of 2009 H1N1 viruses isolated from severe but not mild human cases represents the first molecular marker associated with enhanced disease. To assess the relative contribution of this substitution in virus pathogenesis, transmission, and tropism, we introduced D222G by reverse genetics in the wild-type HA of the 2009 H1N1 virus, A/California/04/09 (CA/04). A dose-dependent glycan array analysis with the D222G virus showed a modest reduction in the binding avidity to human-like (α2-6 sialylated glycan) receptors and an increase in the binding to avian-like (α2-3 sialylated glycan) receptors in comparison with wild-type virus. In the ferret pathogenesis model, the D222G mutant virus was found to be similar to wild-type CA/04 virus with respect to lethargy, weight loss and replication efficiency in the upper and lower respiratory tract. Moreover, based on viral detection, the respiratory droplet transmission properties of these two viruses were found to be similar. The D222G virus failed to productively infect mice inoculated by the ocular route, but exhibited greater viral replication and weight loss than wild-type CA/04 virus in mice inoculated by the intranasal route. In a more relevant human cell model, D222G virus replicated with delayed kinetics compared with wild-type virus but to higher titer in human bronchial epithelial cells. These findings suggest that although the D222G mutation does not influence virus transmission, it may be considered a molecular marker for enhanced replication in certain cell types.


PLOS ONE | 2013

Quantitative Description of Glycan-Receptor Binding of Influenza A Virus H7 Hemagglutinin

Karunya Srinivasan; Rahul Raman; Akila Jayaraman; Karthik Viswanathan; Ram Sasisekharan

In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.


Journal of Virology | 2013

N-Linked Glycosylation of the Hemagglutinin Protein Influences Virulence and Antigenicity of the 1918 Pandemic and Seasonal H1N1 Influenza A Viruses

Xiangjie Sun; Akila Jayaraman; Pavithra Maniprasad; Rahul Raman; Katherine V. Houser; Claudia Pappas; Hui Zeng; Ram Sasisekharan; Jacqueline M. Katz; Terrence M. Tumpey

ABSTRACT The hemagglutinin (HA) protein is a major virulence determinant for the 1918 pandemic influenza virus; however, it encodes no known virulence-associated determinants. In comparison to seasonal influenza viruses of lesser virulence, the 1918 H1N1 virus has fewer glycosylation sequons on the HA globular head region. Using site-directed mutagenesis, we found that a 1918 HA recombinant virus, of high virulence, could be significantly attenuated in mice by adding two additional glycosylation sites (asparagine [Asn] 71 and Asn 286) on the side of the HA head. The 1918 HA recombinant virus was further attenuated by introducing two additional glycosylation sites on the top of the HA head at Asn 142 and Asn 172. In a reciprocal experimental approach, deletion of HA glycosylation sites (Asn 142 and Asn 177, but not Asn 71 and Asn 104) from a seasonal influenza H1N1 virus, A/Solomon Islands/2006 (SI/06), led to increased virulence in mice. The addition of glycosylation sites to 1918 HA and removal of glycosylation sites from SI/06 HA imposed constraints on the theoretical structure surrounding the glycan receptor binding sites, which in turn led to distinct glycan receptor binding properties. The modification of glycosylation sites for the 1918 and SI/06 viruses also caused changes in viral antigenicity based on cross-reactive hemagglutinin inhibition antibody titers with antisera from mice infected with wild-type or glycan mutant viruses. These results demonstrate that glycosylation patterns of the 1918 and seasonal H1N1 viruses directly contribute to differences in virulence and are partially responsible for their distinct antigenicity.


PLOS ONE | 2012

Decoding the Distribution of Glycan Receptors for Human-Adapted Influenza A Viruses in Ferret Respiratory Tract

Akila Jayaraman; Aarthi Chandrasekaran; Karthik Viswanathan; Rahul Raman; James G. Fox; Ram Sasisekharan

Ferrets are widely used as animal models for studying influenza A viral pathogenesis and transmissibility. Human-adapted influenza A viruses primarily target the upper respiratory tract in humans (infection of the lower respiratory tract is observed less frequently), while in ferrets, upon intranasal inoculation both upper and lower respiratory tract are targeted. Viral tropism is governed by distribution of complex sialylated glycan receptors in various cells/tissues of the host that are specifically recognized by influenza A virus hemagglutinin (HA), a glycoprotein on viral surface. It is generally known that upper respiratory tract of humans and ferrets predominantly express α2→6 sialylated glycan receptors. However much less is known about the fine structure of these glycan receptors and their distribution in different regions of the ferret respiratory tract. In this study, we characterize distribution of glycan receptors going beyond terminal sialic acid linkage in the cranial and caudal regions of the ferret trachea (upper respiratory tract) and lung hilar region (lower respiratory tract) by multiplexing use of various plant lectins and human-adapted HAs to stain these tissue sections. Our findings show that the sialylated glycan receptors recognized by human-adapted HAs are predominantly distributed in submucosal gland of lung hilar region as a part of O-linked glycans. Our study has implications in understanding influenza A viral pathogenesis in ferrets and also in employing ferrets as animal models for developing therapeutic strategies against influenza.


PLOS ONE | 2011

A Single Base-Pair Change in 2009 H1N1 Hemagglutinin Increases Human Receptor Affinity and Leads to Efficient Airborne Viral Transmission in Ferrets

Akila Jayaraman; Claudia Pappas; Rahul Raman; Jessica A. Belser; Karthik Viswanathan; Zachary Shriver; Terrence M. Tumpey; Ram Sasisekharan

The 2009 H1N1 influenza A virus continues to circulate among the human population as the predominant H1N1 subtype. Epidemiological studies and airborne transmission studies using the ferret model have shown that the transmission efficiency of 2009 H1N1 viruses is lower than that of previous seasonal strains and the 1918 pandemic H1N1 strain. We recently correlated this reduced transmission efficiency to the lower binding affinity of the 2009 H1N1 hemagglutinin (HA) to α2→6 sialylated glycan receptors (human receptors). Here we report that a single point mutation (Ile219→Lys; a base pair change) in the glycan receptor-binding site (RBS) of a representative 2009 H1N1 influenza A virus, A/California/04/09 or CA04/09, quantitatively increases its human receptor-binding affinity. The increased human receptor-affinity is in the same range as that of the HA from highly transmissible seasonal and 1918 pandemic H1N1 viruses. Moreover, a 2009 H1N1 virus carrying this mutation in the RBS (generated using reverse genetics) transmits efficiently in ferrets by respiratory droplets thereby reestablishing our previously observed correlation between human receptor-binding affinity and transmission efficiency. These findings are significant in the context of monitoring the evolution of the currently circulating 2009 H1N1 viruses.


Biochemical Journal | 2012

Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

Akila Jayaraman; Xiaoying Koh; Jing Li; Rahul Raman; Karthik Viswanathan; Zachary Shriver; Ram Sasisekharan

The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn91 in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.


Virology | 2013

Receptor specificity does not affect replication or virulence of the 2009 pandemic H1N1 influenza virus in mice and ferrets.

Seema S. Lakdawala; Angela R. Shih; Akila Jayaraman; Elaine W. Lamirande; Ian N. Moore; Myeisha Paskel; Ram Sasisekharan; Kanta Subbarao

Human influenza viruses predominantly bind α2,6 linked sialic acid (SA) while avian viruses bind α2,3 SA-containing complex glycans. Virulence and tissue tropism of influenza viruses have been ascribed to this binding preference. We generated 2009 pandemic H1N1 (pH1N1) viruses with either predominant α2,3 or α2,6 SA binding and evaluated these viruses in mice and ferrets. The α2,3 pH1N1 virus had similar virulence in mice and replicated to similar titers in the respiratory tract of mice and ferrets as the α2,6 and WT pH1N1 viruses. Immunohistochemical analysis determined that all viruses infected similar cell types in ferret lungs. There is increasing evidence that receptor specificity of influenza viruses is more complex than the binary model of α2,6 and α2,3 SA binding and our data suggest that influenza viruses use a wide range of SA moieties to infect host cells.

Collaboration


Dive into the Akila Jayaraman's collaboration.

Top Co-Authors

Avatar

Ram Sasisekharan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rahul Raman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karthik Viswanathan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zachary Shriver

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Claudia Pappas

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Kannan Tharakaraman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Terrence M. Tumpey

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine W. Lamirande

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hui Zeng

National Center for Immunization and Respiratory Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge