Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akimitsu Narita is active.

Publication


Featured researches published by Akimitsu Narita.


Journal of the American Chemical Society | 2012

Structurally Defined Graphene Nanoribbons with High Lateral Extension

Matthias Georg Schwab; Akimitsu Narita; Yenny Hernandez; Tatyana Balandina; Kunal S. Mali; S. De Feyter; Xinliang Feng; Klaus Müllen

Oxidative cyclodehydrogenation of laterally extended polyphenylene precursor allowed bottom-up synthesis of structurally defined graphene nanoribbons (GNRs) with unprecedented width. The efficiency of the cyclodehydrogenation was validated by means of MALDI-TOF MS, FT-IR, Raman, and UV-vis absorption spectroscopies as well as investigation of a representative model system. The produced GNRs demonstrated broad absorption extended to near-infrared region with the optical band gap of as low as 1.12 eV.


Nature Communications | 2013

Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons

Yuan-Zhi Tan; Bo Yang; Khaled Parvez; Akimitsu Narita; Silvio Osella; David Beljonne; Xinliang Feng; Klaus Müllen

Chemical functionalization is one of the most powerful and widely used strategies to control the properties of nanomaterials, particularly in the field of graphene. However, the ill-defined structure of the present functionalized graphene inhibits atomically precise structural characterization and structure-correlated property modulation. Here we present a general edge chlorination protocol for atomically precise functionalization of nanographenes at different scales from 1.2 to 3.4 nm and its application in graphene nanoribbons. The well-defined edge chlorination is unambiguously confirmed by X-ray single-crystal analysis, which also discloses the characteristic non-planar molecular shape and detailed bond lengths of chlorinated nanographenes. Chlorinated nanographenes and graphene nanoribbons manifest enhanced solution processability associated with decreases in the optical band gap and frontier molecular orbital energy levels, exemplifying the structure-correlated property modulation by precise edge chlorination.


ACS Nano | 2014

Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption

Akimitsu Narita; Ivan Verzhbitskiy; Wout Frederickx; Kunal S. Mali; Soeren Alkaersig Jensen; Michael Ryan Hansen; Mischa Bonn; Steven De Feyter; Cinzia Casiraghi; Xinliang Feng; Klaus Müllen

Structurally defined, long (>100 nm), and low-band-gap (∼1.2 eV) graphene nanoribbons (GNRs) were synthesized through a bottom-up approach, enabling GNRs with a broad absorption spanning into the near-infrared (NIR) region. The chemical identity of GNRs was validated by IR, Raman, solid-state NMR, and UV-vis-NIR absorption spectroscopy. Atomic force microscopy revealed well-ordered self-assembled monolayers of uniform GNRs on a graphite surface upon deposition from the liquid phase. The broad absorption of the low-band-gap GNRs enables their detailed characterization by Raman and time-resolved terahertz photoconductivity spectroscopy with excitation at multiple wavelengths, including the NIR region, which provides further insights into the fundamental physical properties of such graphene nanostructures.


ACS Nano | 2012

Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design

Silvio Osella; Akimitsu Narita; Matthias Schwab; Yenny Hernandez; Xinliang Feng; Klaus Müllen; David Beljonne

Graphene nanoribbons (GNRs) are strips of graphene cut along a specific direction that feature peculiar electronic and optical properties owing to lateral confinement effects. We show here by means of (time-dependent) density functional theory calculations that GNRs with properly designed edge structures fulfill the requirements in terms of electronic level alignment with common acceptors (namely, C(60)), solar light harvesting, and singlet-triplet exchange energy to be used as low band gap semiconductors for organic photovoltaics.


Journal of the American Chemical Society | 2015

Free-Standing Monolayer Two-Dimensional Supramolecular Organic Framework with Good Internal Order

Martin Pfeffermann; Renhao Dong; Robert Graf; Wojciech Zajaczkowski; Tatiana Gorelik; Wojciech Pisula; Akimitsu Narita; Klaus Müllen; Xinliang Feng

Utilizing dynamic self-assembly and self-sorting to obtain large-area, molecularly precise monolayered structures represents a promising approach toward two-dimensional supramolecular organic frameworks (2D SOF) or 2D supramolecular polymers. So far, related approaches suffer from small domain sizes, fragility and weak long-range internal order. Here we report on the self-assembly of a host–guest enhanced donor–acceptor interaction, consisting of a tris(methoxynaphthyl)-substituted truxene spacer, and a naphthalene diimide substituted with N-methyl viologenyl moieties as donor and acceptor monomers, respectively, in combination with cucurbit[8]uril as host monomer toward monolayers of an unprecedented 2D SOF. Featuring orthogonal solubility, the participating molecules self-assemble at a liquid–liquid interface, yielding exceptionally large-area, insoluble films, which were analyzed by transmission electron microscopy, atomic force microscopy and optical microscopy to be monolayers with a thickness of 1.8 nm, homogeneously covering areas up to 0.25 cm2, and featuring the ability to be free-standing over holes of 10 μm2. Characterization with ultraviolet–visible absorption spectroscopy, solid-state nuclear magnetic resonance spectroscopy, infrared spectroscopy, and grazing incidence wide-angle X-ray scattering allowed for confirmation of a successful complexation of all three monomers toward an internal long-range order and gave indications to an expected hexagonal superstructure. Our results extend the existing variety of two-dimensional soft nanomaterials by a versatile supramolecular approach, whereas the possibility of varying the functional monomers is supposed to open adaptability to different applications like membranes, sensors, molecular sieves, and optoelectronics.


Journal of the American Chemical Society | 2014

Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons

Ahmad N. Abbas; Gang Liu; Akimitsu Narita; Manuel Orosco; Xinliang Feng; Klaus Müllen; Chongwu Zhou

Bottom-up synthesis of graphene nanoribbons (GNRs) is an essential step toward utilizing them in electronic and sensing applications due to their defined edge structure and high uniformity. Recently, structurally perfect GNRs with variable lengths and edge structures were created using various chemical synthesis techniques. Nonetheless, issues like GNR deposition, characterization, electronic properties, and applications are not fully explored. Here we report optimized conditions for deposition, characterization, and device fabrication of individual and thin films of ultra-long chemically synthesized GNRs. Moreover, we have demonstrated exceptional NO2 gas sensitivity of the GNR film devices down to parts per billion (ppb) levels. The results lay the foundation for using chemically synthesized GNRs for future electronic and sensing applications.


Journal of the American Chemical Society | 2015

B2N2-Dibenzo[a,e]pentalenes: Effect of the BN Orientation Pattern on Antiaromaticity and Optoelectronic Properties

Xiao-Ye Wang; Akimitsu Narita; Xinliang Feng; Klaus Müllen

Two BN units were embedded in dibenzo[a,e]pentalene with different orientation patterns, which significantly modulated its antiaromaticity and optoelectronic properties. Importantly, the vital role of the BN orientation in conjugated molecules with more than one BN unit was demonstrated for the first time. This work indicates a large potential of the BN/CC isosterism for the development of new antiaromatic systems and highlights the importance of precise control of the BN substitution patterns in conjugated materials.


Nanoscale | 2014

Graphene nanoribbon blends with P3HT for organic electronics.

M. El Gemayel; Akimitsu Narita; Lukas Dössel; R. S. Sundaram; Adam Kiersnowski; Wojciech Pisula; Michael Ryan Hansen; A. C. Ferrari; Emanuele Orgiu; Xinliang Feng; Klaus Müllen; Paolo Samorì

In organic field-effect transistors (OFETs) the electrical characteristics of polymeric semiconducting materials suffer from the presence of structural/morphological defects and grain boundaries as well as amorphous domains within the film, hindering an efficient transport of charges. To improve the percolation of charges we blend a regioregular poly(3-hexylthiophene) (P3HT) with newly designed N = 18 armchair graphene nanoribbons (GNRs). The latter, prepared by a bottom-up solution synthesis, are expected to form solid aggregates which cannot be easily interfaced with metallic electrodes, limiting charge injection at metal-semiconductor interfaces, and are characterized by a finite size, thus by grain boundaries, which negatively affect the charge transport within the film. Both P3HT and GNRs are soluble/dispersible in organic solvents, enabling the use of a single step co-deposition process. The resulting OFETs show a three-fold increase in the charge carrier mobilities in blend films, when compared to pure P3HT devices. This behavior can be ascribed to GNRs, and aggregates thereof, facilitating the transport of the charges within the conduction channel by connecting the domains of the semiconductor film. The electronic characteristics of the devices such as the Ion/Ioff ratio are not affected by the addition of GNRs at different loads. Studies of the electrical characteristics under illumination for potential use of our blend films as organic phototransistors (OPTs) reveal a tunable photoresponse. Therefore, our strategy offers a new method towards the enhancement of the performance of OFETs, and holds potential for technological applications in (opto)electronics.


Angewandte Chemie | 2017

Benzo‐Fused Double [7]Carbohelicene: Synthesis, Structures, and Physicochemical Properties

Yunbin Hu; Xiao-Ye Wang; Pixian Peng; Xinchang Wang; Xiao-Yu Cao; Xinliang Feng; Klaus Müllen; Akimitsu Narita

A benzo-fused double [7]carbohelicene (D7H) was synthesized through a regioselective cyclodehydrogenation of a tetranaphthyl-p-terphenyl-based precursor. The twisted (D7H-1) and anti-folded (D7H-2) conformers of D7H were separated by recrystallization, and their double helicene structures with overlapping terminal benzene rings were unambiguously elucidated by X-ray crystallography. A record-high isomerization barrier (46.0 kcal mol-1 ) in double helicenes was estimated based on density functional theory (DFT) calculation, which resulted in the excellent conformational stability of D7H. The physicochemical properties of D7H-1 and D7H-2 were investigated by UV/Vis absorption spectroscopy and cyclic voltammetry, displaying the variation of electronic structure upon conformational changes. The optical resolution of the racemic D7H-1 was carried out by chiral HPLC, offering enantiopure D7H-1-(P,P) and D7H-1-(M,M), which were further characterized by circular dichroism spectroscopy.


Nature Communications | 2016

Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons.

Giancarlo Soavi; Stefano Dal Conte; Cristian Manzoni; Daniele Viola; Akimitsu Narita; Yunbin Hu; Xinliang Feng; Ulrich Hohenester; Elisa Molinari; Deborah Prezzi; Klaus Müllen; Giulio Cerullo

Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron–hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics.

Collaboration


Dive into the Akimitsu Narita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Ruffieux

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Roman Fasel

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge