Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akinobu Ito is active.

Publication


Featured researches published by Akinobu Ito.


Applied and Environmental Microbiology | 2009

Increased Antibiotic Resistance of Escherichia coli in Mature Biofilms

Akinobu Ito; Asami Taniuchi; Thithiwat May; Koji Kawata; Satoshi Okabe

ABSTRACT Biofilms are considered to be highly resistant to antimicrobial agents. Several mechanisms have been proposed to explain this high resistance of biofilms, including restricted penetration of antimicrobial agents into biofilms, slow growth owing to nutrient limitation, expression of genes involved in the general stress response, and emergence of a biofilm-specific phenotype. However, since combinations of these factors are involved in most biofilm studies, it is still difficult to fully understand the mechanisms of biofilm resistance to antibiotics. In this study, the antibiotic susceptibility of Escherichia coli cells in biofilms was investigated with exclusion of the effects of the restricted penetration of antimicrobial agents into biofilms and the slow growth owing to nutrient limitation. Three different antibiotics, ampicillin (100 μg/ml), kanamycin (25 μg/ml), and ofloxacin (10 μg/ml), were applied directly to cells in the deeper layers of mature biofilms that developed in flow cells after removal of the surface layers of the biofilms. The results of the antibiotic treatment analyses revealed that ofloxacin and kanamycin were effective against biofilm cells, whereas ampicillin did not kill the cells, resulting in regrowth of the biofilm after the ampicillin treatment was discontinued. LIVE/DEAD staining revealed that a small fraction of resistant cells emerged in the deeper layers of the mature biofilms and that these cells were still alive even after 24 h of ampicillin treatment. Furthermore, to determine which genes in the biofilm cells are induced, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. The results showed that significant changes in gene expression occurred during biofilm formation, which were partly induced by rpoS expression. Based on the experimental data, it is likely that the observed resistance of biofilms can be attributed to formation of ampicillin-resistant subpopulations in the deeper layers of mature biofilms but not in young colony biofilms and that the production and resistance of the subpopulations were aided by biofilm-specific phenotypes, like slow growth and induction of rpoS-mediated stress responses.


Antimicrobial Agents and Chemotherapy | 2016

In Vitro Antimicrobial Activity of a Siderophore Cephalosporin, S-649266, against Enterobacteriaceae Clinical Isolates, Including Carbapenem-Resistant Strains

Naoki Kohira; Joshua West; Akinobu Ito; Tsukasa Ito-Horiyama; Rio Nakamura; Takafumi Sato; Stephen Rittenhouse; Masakatsu Tsuji; Yoshinori Yamano

ABSTRACT S-649266 is a novel siderophore cephalosporin antibiotic with a catechol moiety on the 3-position side chain. Two sets of clinical isolate collections were used to evaluate the antimicrobial activity of S-649266 against Enterobacteriaceae. These sets included 617 global isolates collected between 2009 and 2011 and 233 β-lactamase-identified isolates, including 47 KPC-, 49 NDM-, 12 VIM-, and 8 IMP-producers. The MIC90 values of S-649266 against the first set of Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, Enterobacter aerogenes, and Enterobacter cloacae isolates were all ≤1 μg/ml, and there were only 8 isolates (1.3%) among these 617 clinical isolates with MIC values of ≥8 μg/ml. In the second set, the MIC values of S-649266 were ≤4 μg/ml against 109 strains among 116 KPC-producing and class B (metallo) carbapenemase-producing strains. In addition, S-649266 showed MIC values of ≤2 μg/ml against each of the 13 strains that produced other types of carbapenemases such as SME, NMC, and OXA-48. The mechanisms of the decreased susceptibility of 7 class B carbapenemase-producing strains with MIC values of ≥16 μg/ml are uncertain. This is the first report to demonstrate that S-649266, a novel siderophore cephalosporin, has significant antimicrobial activity against Enterobacteriaceae, including strains that produce carbapenemases such as KPC and NDM-1.


Antimicrobial Agents and Chemotherapy | 2009

Induction of Multidrug Resistance Mechanism in Escherichia coli Biofilms by Interplay between Tetracycline and Ampicillin Resistance Genes

Thithiwat May; Akinobu Ito; Satoshi Okabe

ABSTRACT Biofilms gain resistance to various antimicrobial agents, and the presence of antibiotic resistance genes is thought to contribute to a biofilm-mediated antibiotic resistance. Here we showed the interplay between the tetracycline resistance efflux pump TetA(C) and the ampicillin resistance gene (blaTEM-1) in biofilms of Escherichia coli harboring pBR322 in the presence of the mixture of ampicillin and tetracycline. E. coli in the biofilms could obtain the high-level resistance to ampicillin, tetracycline, penicillin, erythromycin, and chloramphenicol during biofilm development and maturation as a result of the interplay between the marker genes on the plasmids, the increase of plasmid copy number, and consequently the induction of the efflux systems on the bacterial chromosome, especially the EmrY/K and EvgA/S pumps. In addition, we characterized the overexpression of the TetA(C) pump that contributed to osmotic stress response and was involved in the induction of capsular colanic acid production, promoting formation of mature biofilms. However, this investigated phenomenon was highly dependent on the addition of the subinhibitory concentrations of antibiotic mixture, and the biofilm resistance behavior was limited to aminoglycoside antibiotics. Thus, marker genes on plasmids played an important role in both resistance of biofilm cells to antibiotics and in formation of mature biofilms, as they could trigger specific chromosomal resistance mechanisms to confer a high-level resistance during biofilm formation.


Antimicrobial Agents and Chemotherapy | 2016

Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa

Akinobu Ito; Toru Nishikawa; Shuhei Matsumoto; Hidenori Yoshizawa; Takafumi Sato; Rio Nakamura; Masakatsu Tsuji; Yoshinori Yamano

ABSTRACT Cefiderocol (S-649266) is a novel parenteral siderophore cephalosporin conjugated with a catechol moiety at the third-position side chain. The in vitro activity of cefiderocol against Pseudomonas aeruginosa was enhanced under iron-depleted conditions, whereas that of ceftazidime was not affected. The monitoring of [thiazole-14C]cefiderocol revealed the increased intracellular accumulation of cefiderocol in P. aeruginosa cells incubated under iron-depleted conditions compared with those incubated under iron-sufficient conditions. Cefiderocol was shown to have potent chelating activity with ferric iron, and extracellular iron was efficiently transported into P. aeruginosa cells in the presence of cefiderocol as well as siderophores, while enhanced transport of extracellular ferric iron was not observed when one of the hydroxyl groups of the catechol moiety of cefiderocol was replaced with a methoxy group. We conclude that cefiderocol forms a chelating complex with iron, which is actively transported into P. aeruginosa cells via iron transporters, resulting in potent antibacterial activity of cefiderocol against P. aeruginosa.


Antimicrobial Agents and Chemotherapy | 2016

Stability of Novel Siderophore Cephalosporin S-649266 against Clinically Relevant Carbapenemases

Tsukasa Ito-Horiyama; Yoshikazu Ishii; Akinobu Ito; Takafumi Sato; Rio Nakamura; Norio Fukuhara; Masakatsu Tsuji; Yoshinori Yamano; Keizo Yamaguchi; Kazuhiro Tateda

ABSTRACT To better understand the antibacterial activity of S-649266 against carbapenemase producers, its stability against clinically relevant carbapenemases was investigated. The catalytic efficiencies (kcat/Km) of IMP-1, VIM-2, and L1 for S-649266 were 0.0048, 0.0050, and 0.024 μM−1 s−1, respectively, which were more than 260-fold lower than that for meropenem. Only slight hydrolysis of S-649266 against KPC-3 was observed. NDM-1 hydrolyzed meropenem 3-fold faster than S-649266 at 200 μM.


Biotechnology and Bioengineering | 2009

Localized Expression Profiles of rpoS in Escherichia coli Biofilms

Akinobu Ito; Thithiwat May; Asami Taniuchi; Koji Kawata; Satoshi Okabe

Although importance of the rpoS gene on biofilm formation by Escherichia coli has been suggested, there has not been any report showing where the rpoS is expressed during biofilm formation process. Since physiological state of the cells in the biofilms is considerably heterogeneous, the expression of the rpoS gene must be heterogeneous. In this study, in situ spatial expression of the rpoS gene during biofilm formation was investigated with an rpoS‐gfp transcriptional fusion mutant strain. A ribosomal binding site and a gene encoding a green fluorescent protein were introduced into the downstream of the rpoS gene, which enabled us to observe the in situ spatial expression of the rpoS gene during biofilm formation processes without any disturbance of the rpoS expression. In the early stages of the biofilm formation process, the rpoS gene was expressed in the most of the cells. On the other hand, the rpoS expression was observed only at the outside of the biofilms during the late stages of the biofilm formation process. The in situ spatial expression of the rpoS gene in the biofilm was verified by quantifying the expression levels of the rpoS at the outside and the inside of the biofilms with the real time RT‐PCR. In addition, global gene expression analysis was performed with DNA microarray to investigate physiological difference between the outside and the inside of the biofilms. This heterogeneous rpoS expression profile suggested that the cells at the outside of the biofilm need to express the rpoS to shift the physiological state to the stationary growth mode such as induction of various stress responses and suppression of the motility. Biotechnol. Bioeng. 2009;103: 975–983.


Diagnostic Microbiology and Infectious Disease | 2017

Cefiderocol MIC quality control ranges in iron-depleted cation-adjusted Mueller–Hinton broth using a CLSI M23-A4 multi-laboratory study design

Michael D. Huband; Akinobu Ito; Masakatsu Tsuji; Helio S. Sader; Kelley A. Fedler; Robert K. Flamm

Cefiderocol (formerly S-649266) is a new catechol-substituted parenteral siderophore cephalosporin with potent in vitro antibacterial activity against Gram-negative isolates including multidrug-resistant strains. A recent study following CLSI M23-A4 quality control guidelines established cefiderocol MIC QC ranges against Escherichia coli ATCC 25922 (0.06-0.5 μg/mL) and Pseudomonas aeruginosa ATCC 27853 (0.06-0.5 μg/mL).


Antimicrobial Agents and Chemotherapy | 2017

In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria.

Akinobu Ito; Takafumi Sato; Merime Ota; Miki Takemura; Toru Nishikawa; Shinsuke Toba; Naoki Kohira; Satoshi Miyagawa; Naoki Ishibashi; Shuhei Matsumoto; Rio Nakamura; Masakatsu Tsuji; Yoshinori Yamano

ABSTRACT Cefiderocol (CFDC; S-649266), a novel parenteral siderophore cephalosporin conjugated with a catechol moiety, has a characteristic antibacterial spectrum with a potent activity against a broad range of aerobic Gram-negative bacterial species, including carbapenem-resistant strains of Enterobacteriaceae and nonfermenting bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii. Cefiderocol has affinity mainly for penicillin-binding protein 3 (PBP3) of Enterobacteriaceae and nonfermenting bacteria similar to that of ceftazidime. A deficiency of the iron transporter PiuA in P. aeruginosa or both CirA and Fiu in Escherichia coli caused 16-fold increases in cefiderocol MICs, suggesting that these iron transporters contribute to the permeation of cefiderocol across the outer membrane. The deficiency of OmpK35/36 in Klebsiella pneumoniae and the overproduction of efflux pump MexA-MexB-OprM in P. aeruginosa showed no significant impact on the activity of cefiderocol.


Journal of Antimicrobial Chemotherapy | 2018

Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae

Akinobu Ito; Toru Nishikawa; Merime Ota; Tsukasa Ito-Horiyama; Naoki Ishibashi; Takafumi Sato; Masakatsu Tsuji; Yoshinori Yamano

Abstract Objectives The siderophore cephalosporin cefiderocol possesses in vitro activity against MDR Gram-negative bacteria. The stability of cefiderocol against serine- and metallo-type carbapenemases has been reported previously, but little is known about how cefiderocol interacts with chromosomal AmpC β-lactamases. We investigated a number of features of cefiderocol, namely antibacterial activity against AmpC overproducers, stability against AmpC β-lactamases and propensity for AmpC induction using Pseudomonas aeruginosa and Enterobacter cloacae. Methods MICs were determined by broth microdilution according to CLSI guidelines. The MIC of cefiderocol was determined in iron-depleted CAMHB. Hydrolysis of the antibiotics was determined by monitoring the changes in the absorbance in the presence of AmpC β-lactamase, and AmpC induction was evaluated by double disc diffusion and nitrocefin degradation assays. Results The MICs of ceftazidime and cefepime for PAO1 increased 4- to 16-fold with inactivation of either ampD or dacB, whereas cefiderocol MICs were little affected by these inactivations (<2-fold increase). Cefiderocol has 40- and >940-fold lower affinity (higher Ki) to AmpCs of P. aeruginosa SR24-12 and E. cloacae P99, respectively, compared with ceftazidime. Both disc diffusion and nitrocefin degradation assays indicated that cefiderocol did not induce AmpC β-lactamases of P. aeruginosa PAO1 and ATCC 27853 and E. cloacae ATCC 13047, whereas imipenem did. Conclusions Cefiderocol showed in vitro activity against the AmpC-overproducing strains, low affinity for chromosomal AmpC β-lactamases, and a low propensity of temporal induction of AmpC β-lactamases of P. aeruginosa and E. cloacae. These features relating to chromosomal AmpC could explain the potent antibacterial activity of cefiderocol against drug-resistant strains producing AmpC β-lactamases.


Biotechnology and Bioengineering | 2008

Significance of rpoS during maturation of Escherichia coli biofilms

Akinobu Ito; Thithiwat May; Koji Kawata; Satoshi Okabe

Collaboration


Dive into the Akinobu Ito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge