Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akinobu Maeda is active.

Publication


Featured researches published by Akinobu Maeda.


Atherosclerosis | 2009

Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis

Hiroshi Mitsuhashi; Kouichi Tamura; Junji Yamauchi; Motoko Ozawa; Mai Yanagi; Toru Dejima; Hiromichi Wakui; Shin-ichiro Masuda; Koichi Azuma; Tomohiko Kanaoka; Masato Ohsawa; Akinobu Maeda; Yuko Tsurumi-Ikeya; Yasuko Okano; Yoshiyuki Toya; Yasuo Tokita; Toshimasa Ohnishi; Satoshi Umemura

OBJECTIVE Previous studies have shown increases in ambulatory short-term blood pressure (BP) variability to be related to cardiovascular disease. In this study, we examined whether an angiotensin II type 1 receptor blocker losartan would improve ambulatory short-term BP variability in hypertensive patients on hemodialysis. METHODS Forty hypertensive patients on hemodialysis therapy were randomly assigned to the losartan treatment group (n=20) or the control treatment group (n=20). At baseline and 6 and 12 months after the treatment, 24-h ambulatory BP monitoring was performed. Echocardiography and measurements of brachial-ankle pulse wave velocity (baPWV) and biochemical parameters were also performed before and after therapy. RESULTS After 6- and 12-months of treatment, nighttime short-term BP variability, assessed on the basis of the coefficient of variation of ambulatory BP, was significantly decreased in the losartan group, but remained unchanged in the control group. Compared with the control group, losartan significantly decreased left ventricular mass index (LVMI), baPWV, and the plasma levels of brain natriuretic peptide and advanced glycation end products (AGE). Furthermore, multiple regression analysis showed significant correlations between changes in LVMI and changes in nighttime short-term BP variability, as well as between changes in LVMI and changes in the plasma levels of AGE. CONCLUSION These results suggest that losartan is beneficial for the suppression of pathological cardiovascular remodeling though its inhibitory effect on ambulatory short-term BP variability during nighttime.


Hypertension | 2010

Cardiac-Specific Activation of Angiotensin II Type 1 Receptor–Associated Protein Completely Suppresses Cardiac Hypertrophy in Chronic Angiotensin II–Infused Mice

Hiromichi Wakui; Kouichi Tamura; Yutaka Tanaka; Miyuki Matsuda; Yunzhe Bai; Toru Dejima; Shin-ichiro Masuda; Atsu-ichiro Shigenaga; Akinobu Maeda; Masaki Mogi; Naoaki Ichihara; Yusuke Kobayashi; Nobuhito Hirawa; Yoshiyuki Toya; Machiko Yabana; Masatsugu Horiuchi; Susumu Minamisawa; Satoshi Umemura

We cloned a novel molecule interacting with angiotensin II type 1 receptor, which we named ATRAP (for angiotensin II type 1 receptor–associated protein). Previous in vitro studies showed that ATRAP significantly promotes constitutive internalization of the angiotensin II type 1 receptor and further attenuates angiotensin II–mediated hypertrophic responses in cardiomyocytes. The present study was designed to investigate the putative functional role of ATRAP in cardiac hypertrophy by angiotensin II infusion in vivo. We first examined the effect of angiotensin II infusion on endogenous ATRAP expression in the heart of C57BL/6J wild-type mice. The angiotensin II treatment promoted cardiac hypertrophy, concomitant with a significant decrease in cardiac ATRAP expression, but without significant change in cardiac angiotensin II type 1 receptor expression. We hypothesized that a downregulation of the cardiac ATRAP to angiotensin II type 1 receptor ratio is involved in the pathogenesis of cardiac hypertrophy. To examine this hypothesis, we next generated transgenic mice expressing ATRAP specifically in cardiomyocytes under control of the &agr;-myosin heavy chain promoter. In cardiac-specific ATRAP transgenic mice, the development of cardiac hypertrophy, activation of p38 mitogen-activated protein kinase, and expression of hypertrophy-related genes in the context of angiotensin II treatment were completely suppressed, in spite of there being no significant difference in blood pressure on radiotelemetry between the transgenic mice and littermate control mice. These results demonstrate that cardiomyocyte-specific overexpression of ATRAP in vivo abolishes the cardiac hypertrophy provoked by chronic angiotensin II infusion, thereby suggesting ATRAP to be a novel therapeutic target in cardiac hypertrophy.


Hypertension Research | 2009

Effects of angiotensin II type 1 receptor blocker on ambulatory blood pressure variability in hypertensive patients with overt diabetic nephropathy.

Shin-ichiro Masuda; Kouichi Tamura; Hiromichi Wakui; Tomohiko Kanaoka; Masato Ohsawa; Akinobu Maeda; Toru Dejima; Mai Yanagi; Koichi Azuma; Satoshi Umemura

Previous studies have shown increases in ambulatory short-term blood pressure (BP) variability to be related to cardiovascular disease. In this study, we examined whether the angiotensin II type 1 receptor blocker (ARB) would improve ambulatory short-term BP variability in hypertensive patients with diabetic nephropathy. A total of 30 patients with type II diabetes, along with hypertension and overt nephropathy, were enrolled in this randomized, two-period, crossover trial of 12 weeks of treatment with losartan (50 mg daily) and telmisartan (40 mg daily). At baseline and at the end of each treatment period, 24-h ambulatory BP monitoring with power spectral analysis of heart rate and measurements of proteinuria, estimated glomerular filtration rate and brachial-ankle pulse wave velocity (baPWV) were performed. After 12 weeks of treatment, 24-h, daytime and nighttime short-term BP variability, assessed on the basis of the coefficient of variation of ambulatory BP, was significantly decreased by telmisartan. Both losartan and telmisartan reduced urinary protein excretion and baPWV. However, compared with losartan, telmisartan significantly decreased urinary protein excretion, baPWV and low-frequency (LF)-to-high-frequency (HF) ratio, an index of sympathovagal balance. Multiple regression analysis showed significant correlations between urinary protein excretion and baPWV, 24-h LF-to-HF ratio, nighttime systolic BP and 24-h short-term systolic BP variability. These results suggest that ARB, particularly telmisartan, is effective in reducing proteinuria in hypertensive patients with overt diabetic nephropathy, partly through inhibitory effects on ambulatory short-term BP variability and sympathetic nerve activity, in addition to its longer duration of action on nighttime BP reduction.


Cardiovascular Research | 2013

Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension

Hiromichi Wakui; Toru Dejima; Kouichi Tamura; Kazushi Uneda; Koichi Azuma; Akinobu Maeda; Masato Ohsawa; Tomohiko Kanaoka; Kengo Azushima; Ryu Kobayashi; Miyuki Matsuda; Akio Yamashita; Satoshi Umemura

AIMS Activation of tissue angiotensin II (Ang II) type 1 receptor (AT1R) plays an important role in the development of vascular remodelling. We have shown that the AT1R-associated protein (ATRAP/Agtrap), a specific binding protein of AT1R, functions as an endogenous inhibitor to prevent pathological activation of the tissue renin-angiotensin system. In this study, we investigated the effects of ATRAP on Ang II-induced vascular remodelling. METHODS AND RESULTS Transgenic (Tg) mice with a pattern of aortic vascular-dominant overexpression of ATRAP were obtained, and Ang II or vehicle was continuously infused into Tg and wild-type (Wt) mice via an osmotic minipump for 14 days. Although blood pressure of Ang II-infused Tg mice was comparable with that of Ang II-infused Wt mice, the Ang II-mediated development of aortic vascular hypertrophy was partially inhibited in Tg mice compared with Wt mice. In addition, Ang II-mediated up-regulation of vascular Nox4 and p22(phox), NADPH oxidase components, and 4-HNE, a marker of reactive oxygen species (ROS) generation, was significantly suppressed in Tg mice, with a concomitant inhibition of activation of aortic vascular p38MAPK and JNK by Ang II. This protection afforded by vascular ATRAP against Ang II-induced activation of NADPH oxidase is supported by in vitro experimental data using adenoviral transfer of recombinant ATRAP. CONCLUSION These results indicate that activation of aortic vascular ATRAP partially inhibits the Nox4/p22(phox)-ROS-p38MAPK/JNK pathway and pathological aortic hypertrophy provoked by Ang II-mediated hypertension, thereby suggesting ATRAP as a novel receptor-binding modulator of vascular pathophysiology.


American Journal of Physiology-renal Physiology | 2010

Intrarenal suppression of angiotensin II type 1 receptor binding molecule in angiotensin II-infused mice

Hiromichi Wakui; Kouichi Tamura; Miyuki Matsuda; Yunzhe Bai; Toru Dejima; Atsu-ichiro Shigenaga; Shin-ichiro Masuda; Koichi Azuma; Akinobu Maeda; Tomonori Hirose; Yoshiyuki Toya; Machiko Yabana; Susumu Minamisawa; Satoshi Umemura

ATRAP [ANG II type 1 receptor (AT1R)-associated protein] is a molecule which directly interacts with AT1R and inhibits AT1R signaling. The aim of this study was to examine the effects of continuous ANG II infusion on the intrarenal expression and distribution of ATRAP and to determine the role of AT1R signaling in mediating these effects. C57BL/6 male mice were subjected to vehicle or ANG II infusions at doses of 200, 1,000, or 2,500 ng·kg(-1)·min(-1) for 14 days. ANG II infusion caused significant suppression of ATRAP expression in the kidney but did not affect ATRAP expression in the testis or liver. Although only the highest ANG II dose (2,500 ng·kg(-1)·min(-1)) provoked renal pathological responses, such as an increase in the mRNA expression of angiotensinogen and the α-subunit of the epithelial sodium channel, ANG II-induced decreases in ATRAP were observed even at the lowest dose (200 ng·kg(-1)·min(-1)), particularly in the outer medulla of the kidney, based on immunohistochemical staining and Western blot analysis. The decrease in renal ATRAP expression by ANG II infusion was prevented by treatment with the AT1R-specific blocker olmesartan. In addition, the ANG II-mediated decrease in renal ATRAP expression through AT1R signaling occurred without an ANG II-induced decrease in plasma membrane AT1R expression in the kidney. On the other hand, a transgenic model increase in renal ATRAP expression beyond baseline was accompanied by a constitutive reduction of renal plasma membrane AT1R expression and by the promotion of renal AT1R internalization as well as the decreased induction of angiotensinogen gene expression in response to ANG II. These results suggest that the plasma membrane AT1R level in the kidney is modulated by intrarenal ATRAP expression under physiological and pathophysiological conditions in vivo.


Hypertension | 2013

Enhanced Angiotensin Receptor-Associated Protein in Renal Tubule Suppresses Angiotensin-Dependent Hypertension

Hiromichi Wakui; Kouichi Tamura; Shin-ichiro Masuda; Yuko Tsurumi-Ikeya; Megumi Fujita; Akinobu Maeda; Masato Ohsawa; Kengo Azushima; Kazushi Uneda; Miyuki Matsuda; Kenichiro Kitamura; Shinichi Uchida; Yoshiyuki Toya; Hiroyuki Kobori; Kiyotaka Nagahama; Akio Yamashita; Satoshi Umemura

We have previously shown that angiotensin II type 1 receptor-associated protein (ATRAP/Agtrap) interacts with the angiotensin II type 1 receptor and promotes constitutive internalization of the receptor so as to inhibit the pathological activation of its downstream signaling but preserve baseline physiological signaling activity. The present study was designed to investigate the role of renal ATRAP in angiotensin II–dependent hypertension. We generated transgenic mice dominantly expressing ATRAP in the renal tubules, including renal distal tubules. The renal ATRAP transgenic mice exhibited no significant change in blood pressure at baseline on normal salt diet. However, in the renal ATRAP transgenic mice compared with wild-type mice, the following took place: (1) the development of high blood pressure in response to angiotensin II infusion was significantly suppressed based on radiotelemetry, (2) the extent of daily positive sodium balance was significantly reduced during angiotensin II infusion in metabolic cage analysis, and (3) the renal Na+-Cl− cotransporter activation and &agr;-subunit of the epithelial sodium channel induction by angiotensin II infusion were inhibited. Furthermore, adenoviral overexpression of ATRAP suppressed the angiotensin II–mediated increase in the expression of &agr;-subunit of the epithelial sodium channel in mouse distal convoluted tubule cells. These results indicate that renal tubule–dominant ATRAP activation provokes no evident effects on blood pressure at baseline but exerts an inhibitory effect on the pathological elevation of blood pressure in response to angiotensin II stimulation, thereby suggesting that ATRAP is a potential target of interest in blood pressure modulation under pathological conditions.


American Journal of Physiology-renal Physiology | 2010

Expression of angiotensin II type 1 receptor-interacting molecule in normal human kidney and IgA nephropathy

Shin-ichiro Masuda; Kouichi Tamura; Hiromichi Wakui; Akinobu Maeda; Toru Dejima; Tomonori Hirose; Masao Toyoda; Koichi Azuma; Masato Ohsawa; Tomohiko Kanaoka; Mai Yanagi; Shin-ichiro Yoshida; Hiroshi Mitsuhashi; Miyuki Matsuda; Yoshiyuki Toya; Daisuke Suzuki; Yoji Nagashima; Satoshi Umemura

The intrarenal renin-angiotensin system plays a crucial role in the regulation of renal circulation and sodium reabsorption through the activation of vascular, glomerular, and tubular angiotensin II type 1 (AT(1)) receptor signaling. We previously cloned a molecule that specifically interacted with the murine AT(1) receptor to inhibit AT(1) receptor signaling, which we named ATRAP (for AT(1) receptor-associated protein). Since murine ATRAP was shown to be highly expressed in the kidney, in the present study we investigated expression and distribution of human ATRAP in normal kidney and renal biopsy specimens from patients with IgA nephropathy. In the normal human kidney, both ATRAP mRNA and protein were widely and abundantly distributed along the renal tubules from Bowmans capsule to the medullary collecting ducts. In all renal tubular epithelial cells, the ATRAP protein colocalized with the AT(1) receptor. In renal biopsy specimens with IgA nephropathy, a significant positive correlation between ATRAP and AT(1) receptor gene expression was observed. There was also a positive relationship between tubulointerstitial ATRAP expression and the estimated glomerular filtration rate in patients with IgA nephropathy. Furthermore, we examined the function of the tubular AT(1) receptor using an immortalized cell line of mouse distal convoluted tubule cells (mDCT) and found that overexpression of ATRAP by adenoviral gene transfer suppressed the angiotensin II-mediated increases in transforming growth factor-β production in mDCT cells. These findings suggest that ATRAP might play a role in balancing the renal renin-angiotensin system synergistically with the AT(1) receptor by counterregulatory effects in IgA nephropathy and propose an antagonistic effect of tubular ATRAP on AT(1) receptor signaling.


Current Pharmaceutical Design | 2013

The physiology and pathophysiology of a novel angiotensin receptor-binding protein ATRAP/Agtrap.

Kouichi Tamura; Hiromichi Wakui; Akinobu Maeda; Toru Dejima; Masato Ohsawa; Kengo Azushima; Tomohiko Kanaoka; Sona Haku; Kazushi Uneda; Shin-ichiro Masuda; Koichi Azuma; Atsu-ichiro Shigenaga; Yuichi Koide; Yuko Tsurumi-Ikeya; Miyuki Matsuda; Yoshiyuki Toya; Yasuo Tokita; Akio Yamashita; Satoshi Umemura

The Ang II type 1 receptor (AT1R)-associated protein (ATRAP/Agtrap) is a molecule specifically interacting with the carboxyl- terminal domain of AT1R. The results of in vitro studies showed that ATRAP suppresses Ang II-mediated pathological responses in cardiovascular cells by promoting AT1R internalization. With respect to the tissue distribution and regulation of ATRAP expression in vivo, ATRAP is broadly expressed in many tissues as is AT1R. Accumulating evidence indicates that a tissue-specific regulatory balancing of ATRAP and AT1R expression may be involved in the modulation of AT1R signaling at local tissue sites and also in the pathophysiology of hypertension and its associated end-organ injury. Furthermore, the activation of ATRAP in transgenic-models inhibited inflammatory vascular remodeling and cardiac hypertrophy in response to Ang II stimulation. These results suggest the clinical potential benefit of an ATRAP activation strategy in the treatment of hypertension and related organ injury.


Journal of Clinical Hypertension | 2012

Effects of aliskiren-based therapy on ambulatory blood pressure profile, central hemodynamics, and arterial stiffness in nondiabetic mild to moderate hypertensive patients.

Tomohiko Kanaoka; Kouichi Tamura; Masato Ohsawa; Hiromichi Wakui; Akinobu Maeda; Toru Dejima; Kengo Azushima; Sona Haku; Hiroshi Mitsuhashi; Mai Yanagi; Jin Oshikawa; Kazushi Uneda; Kazutaka Aoki; Tetsuya Fujikawa; Yoshiyuki Toya; Kazuaki Uchino; Satoshi Umemura

J Clin Hypertens (Greenwich). 2012;00:000–000. ©2012 Wiley Periodicals, Inc.


Journal of Hypertension | 2011

Prepubertal angiotensin blockade exerts long-term therapeutic effect through sustained ATRAP activation in salt-sensitive hypertensive rats.

Toru Dejima; Kouichi Tamura; Hiromichi Wakui; Akinobu Maeda; Masato Ohsawa; Tomohiko Kanaoka; Sona Haku; Azushima Kengo; Shin-ichiro Masuda; Atsu-ichiro Shigenaga; Koichi Azuma; Miyuki Matsuda; Machiko Yabana; Tomonori Hirose; Kazuaki Uchino; Kazuo Kimura; Yoji Nagashima; Satoshi Umemura

Objective We previously showed that the molecule interacting with Ang II type 1 receptor (AT1R), ATRAP, promotes AT1R internalization and attenuates AT1R-mediated pathological responses. In this study we examined whether the regulation of renal ATRAP expression is related to the development of salt-induced hypertension and renal injury as well as to the beneficial effects of AT1R blockade. Methods and results Dahl Iwai salt-sensitive hypertensive and Dahl Iwai salt-resistant rats were divided into six groups for the administration of vehicle or olmesartan either continuously from 3 to 16 weeks, or transiently from weaning to puberty (3–10 weeks), and fed high salt diet from 6 to 16 weeks. In Dahl Iwai salt-sensitive rats, not only continuous, but also prepubertal olmesartan treatment improved hypertension at 15 weeks. Renal ATRAP expression was suppressed in vehicle-treated Dahl Iwai salt-sensitive rats, concomitant with up-regulation of renal oxidative stress, inflammation and fibrosis-related markers such as p22phox, TGF-&bgr;, fibronectin, monocyte chemotactic protein-1 and type 1 collagen. However, prepubertal as well as continuous olmesartan treatment recovered the suppressed renal ATRAP expression and inhibited the renal activation of p22phox, TGF-&bgr;, fibronectin, MCP-1 and type 1 collagen. In Dahl Iwai salt-resistant rats, such suppression of renal ATRAP expression or induction of renal pathological responses by salt loading was not observed. Conclusions These results indicate that prepubertal transient blockade of AT1R signaling exerts a long-term therapeutic effect on salt-induced hypertension and renal injury in Dahl Iwai salt-sensitive rats, partly through a sustained enhancement of renal ATRAP expression, thereby suggesting ATRAP a novel molecular target in salt-induced hypertension and renal injury.

Collaboration


Dive into the Akinobu Maeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kouichi Tamura

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Masato Ohsawa

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kengo Azushima

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Toru Dejima

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Yoshiyuki Toya

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Kazushi Uneda

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Sona Haku

Yokohama City University

View shared research outputs
Researchain Logo
Decentralizing Knowledge