Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akio Masuda is active.

Publication


Featured researches published by Akio Masuda.


Journal of Immunology | 2000

Cutting Edge: Naturally Occurring Soluble Form of Mouse Toll-Like Receptor 4 Inhibits Lipopolysaccharide Signaling

Kenichiro Iwami; Tetsuya Matsuguchi; Akio Masuda; Takeshi Kikuchi; Tipayaratn Musikacharoen; Yasunobu Yoshikai

Toll-like receptors (TLRs) are a family of proteins playing important roles in host defense. Mice defective of functional TLR4 are hyporesponsive to LPS, suggesting that TLR4 is essential for LPS signaling. Here we report the cloning of an alternatively spliced mouse TLR4 (mTLR4) mRNA. The additional exon exists between the second and third exon of the reported mTLR4 gene and contains an in-frame stop codon. The alternatively spliced mRNA encodes 86 aa of the reported mTLR4 and an additional 36 aa. This alternatively spliced mTLR4 mRNA expressed a partially secretary 20-kDa protein, which we named soluble mTLR4 (smTLR4). In a mouse macrophage cell line, the exogenously expressed smTLR4 significantly inhibited LPS-mediated TNF-α production and NF-κB activation. Additionally, in mouse macrophages, LPS increased the mRNA for smTLR4. Taken together, our results indicate that smTLR4 may function as a feedback mechanism to inhibit the excessive LPS responses in mouse macrophages.


Journal of Immunology | 2002

Th2 Cytokine Production from Mast Cells Is Directly Induced by Lipopolysaccharide and Distinctly Regulated by c-Jun N-Terminal Kinase and p38 Pathways

Akio Masuda; Yasunobu Yoshikai; Keiko Aiba; Tetsuya Matsuguchi

Mast cells secrete multiple cytokines and play an important role in allergic inflammation. Although it is widely accepted that bacteria infection occasionally worsens allergic airway inflammation, the mechanism has not been defined. In this study, we show that LPS induced Th2-associated cytokine production such as IL-5, IL-10, and IL-13 from mast cells and also synergistically enhanced production of these cytokines induced by IgE cross-linking. LPS-mediated Th2-type cytokine production was abolished in mouse bone marrow-derived mast cells derived from C3H/HeJ mice, suggesting that Toll-like receptor 4 is essential for the cytokine production. Furthermore, we found that mitogen-activated protein kinases including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 kinase were activated by LPS stimulation in bone marrow-derived mast cells. Inhibition of extracellular signal-regulated kinase activation has little effect on LPS-mediated cytokine production. In contrast, inhibition of c-Jun N-terminal kinase activation significantly suppressed both IL-10 and IL-13 expression at both mRNA and protein levels. Interestingly, although inhibition of p38 did not down-regulate the mRNA induction, it moderately decreased all three cytokine productions by LPS. These results indicate that LPS-mediated production of IL-5, IL-10, and IL-13 was distinctly regulated by mitogen-activated protein kinases. Our findings may indicate a clue to understanding the mechanisms of how bacteria infection worsens the clinical features of asthma.


Nucleic Acids Research | 2008

Human branch point consensus sequence is yUnAy

Kaiping Gao; Akio Masuda; Tohru Matsuura; Kinji Ohno

Yeast carries a strictly conserved branch point sequence (BPS) of UACUAAC, whereas the human BPS is degenerative and is less well characterized. The human consensus BPS has never been extensively explored in vitro to date. Here, we sequenced 367 clones of lariat RT-PCR products arising from 52 introns of 20 human housekeeping genes. Among the 367 clones, a misincorporated nucleotide at the branch point was observed in 181 clones, for which we can precisely pinpoint the branch point. The branch points were comprised of 92.3% A, 3.3% C, 1.7% G and 2.8% U. Our analysis revealed that the human consensus BPS is simply yUnAy, where the underlined is the branch point at position zero and the lowercase pyrimidines (‘y’) are not as well conserved as the uppercase U and A. We found that the branch points are located 21–34 nucleotides upstream of the 3′ end of an intron in 83% clones. We also found that the polypyrimidine tract spans 4–24 nucleotides downstream of the branch point. Our analysis demonstrates that the human BPSs are more degenerative than we have expected and that the human BPSs are likely to be recognized in combination with the polypyrimidine tract and/or the other splicing cis-elements.


Scientific Reports | 2012

Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions

Shinsuke Ishigaki; Akio Masuda; Yusuke Fujioka; Yohei Iguchi; Masahisa Katsuno; Akihide Shibata; Fumihiko Urano; Gen Sobue; Kinji Ohno

FUS is an RNA-binding protein that regulates transcription, alternative splicing, and mRNA transport. Aberrations of FUS are causally associated with familial and sporadic ALS/FTLD. We analyzed FUS-mediated transcriptions and alternative splicing events in mouse primary cortical neurons using exon arrays. We also characterized FUS-binding RNA sites in the mouse cerebrum with HITS-CLIP. We found that FUS-binding sites tend to form stable secondary structures. Analysis of position-dependence of FUS-binding sites disclosed scattered binding of FUS to and around the alternatively spliced exons including those associated with neurodegeneration such as Mapt, Camk2a, and Fmr1. We also found that FUS is often bound to the antisense RNA strand at the promoter regions. Global analysis of these FUS-tags and the expression profiles disclosed that binding of FUS to the promoter antisense strand downregulates transcriptions of the coding strand. Our analysis revealed that FUS regulates alternative splicing events and transcriptions in a position-dependent manner.


Neuroscience Letters | 2009

Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease

Yuan Fu; Mikako Ito; Yasunori Fujita; Masafumi Ito; Masatoshi Ichihara; Akio Masuda; Yumi Suzuki; Satoshi Maesawa; Yasukazu Kajita; Masaaki Hirayama; Ikuroh Ohsawa; Shigeo Ohta; Kinji Ohno

Molecular hydrogen serves as an antioxidant that reduces hydroxyl radicals, but not the other reactive oxygen and nitrogen species. In the past year, molecular hydrogen has been reported to prevent or ameliorate eight diseases in rodents and one in human associated with oxidative stress. In Parkinsons disease, mitochondrial dysfunction and the associated oxidative stress are major causes of dopaminergic cell loss in the substantia nigra. We examined effects of approximately 50%-saturated molecular hydrogen in drinking water before or after the stereotactic surgery on 6-hydroxydopamine-induced nigrostrital degeneration in a rat model of Parkinsons disease. Methamphetamine-induced behavioral analysis showed that molecular hydrogen prevented both the development and progression of the nigrostrital degeneration. Tyrosine hydroxylase staining of the substantia nigra and striatum also demonstrated that pre- and post-treatment with hydrogen prevented the dopaminergic cell loss. Our studies suggest that hydrogen water is likely able to retard the development and progression of Parkinsons disease.


Scientific Reports | 2012

CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay

Akio Masuda; Henriette Skovgaard Andersen; Thomas Koed Doktor; Takaaki Okamoto; Mikako Ito; Brage S. Andresen; Kinji Ohno

CUGBP1 and MBNL1 are developmentally regulated RNA-binding proteins that are causally associated with myotonic dystrophy type 1. We globally determined the in vivo RNA-binding sites of CUGBP1 and MBNL1. Interestingly, CUGBP1 and MBNL1 are both preferentially bound to 3′ UTRs. Analysis of CUGBP1- and MBNL1-bound 3′ UTRs demonstrated that both factors mediate accelerated mRNA decay and temporal profiles of expression arrays supported this. Role of CUGBP1 on accelerated mRNA decay has been previously reported, but the similar function of MBNL1 has not been reported to date. It is well established that CUGBP1 and MBNL1 regulate alternative splicing. Screening by exon array and validation by RT-PCR revealed position dependence of CUGBP1- and MBNL1-binding sites on the resulting alternative splicing pattern. This study suggests that regulation of CUGBP1 and MBNL1 is essential for accurate control of destabilization of a broad spectrum of mRNAs as well as of alternative splicing events.


Journal of Bone and Mineral Research | 2009

JNK Activity Is Essential for Atf4 Expression and Late-Stage Osteoblast Differentiation†

Tetsuya Matsuguchi; Norika Chiba; Kenjiro Bandow; Kyoko Kakimoto; Akio Masuda; Tomokazu Ohnishi

Osteoblasts differentiate from mesodermal progenitors and play a pivotal role in bone formation and mineralization. Several transcription factors including runt‐related transcription factor 2 (RUNX2), Osterix (OSX), and activating transcription factor4 (ATF4) are known to be crucial for the process, whereas the upstream signal transduction controlling the osteoblast differentiation sequence is largely unknown. Here, we explored the role of c‐jun N‐terminal kinase (JNK) in osteoblast differentiation using in vitro differentiation models of primary osteoblasts and MC3T3‐E1 cells with ascorbic acid/β‐glycerophosphate treatment. Terminal osteoblast differentiation, represented by matrix mineralization, was significantly inhibited by the inactivation of JNK with its specific inhibitor and exogenous overexpression of MKP‐M (MAP kinase phosphatase isolated from macrophages), which preferentially inactivates JNK. Conversely, enhanced mineral deposition was observed by inducible overexpression of p54JNK2, whereas it was not observed by the overexpression of p46JNK1 or p46JNK2, indicating a distinct enhancing role of p54JNK2 in osteoblast differentiation. Inactivation of JNK significantly inhibited late‐stage molecular events of osteoblast differentiation, including gene expression of osteocalcin (Ocn) and bone sialoprotein (Bsp). In contrast, earlier differentiation events including alkaline phosphatase (ALP) activation and osteopontin (Opn) expression were not inhibited by JNK inactivation. Although the expression levels of two transcription factor genes, Runx2 and Osx, were not significantly affected by JNK inactivation, induction of Atf4 mRNA during osteoblast differentiation was significantly inhibited. Taken together, these data indicate that JNK activity is specifically required for the late‐stage differentiation events of osteoblasts.


Neurology | 2011

Anti-MuSK autoantibodies block binding of collagen Q to MuSK

Yu Kawakami; Mikako Ito; Masaaki Hirayama; Ko Sahashi; Bisei Ohkawara; Akio Masuda; H. Nishida; Naoki Mabuchi; Andrew G. Engel; Kinji Ohno

Objective: Muscle-specific receptor tyrosine kinase (MuSK) antibody-positive myasthenia gravis (MG) accounts for 5%–15% of autoimmune MG. MuSK mediates the agrin-signaling pathway and also anchors the collagenic tail subunit (ColQ) of acetylcholinesterase (AChE). The exact molecular target of MuSK–immunoglobulin G (IgG), however, remains elusive. As acetylcholine receptor (AChR) deficiency is typically mild and as cholinesterase inhibitors are generally ineffective, we asked if MuSK-IgG interferes with binding of ColQ to MuSK. Methods: We used 3 assays: in vitro overlay of the human ColQ-tailed AChE to muscle sections of Colq−/− mice; in vitro plate-binding assay to quantitate binding of MuSK to ColQ and to LRP4; and passive transfer of MuSK-IgG to mice. Results: The in vitro overlay assay revealed that MuSK-IgG blocks binding of ColQ to the neuromuscular junction. The in vitro plate-binding assay showed that MuSK-IgG exerts a dose-dependent block of MuSK binding to ColQ by but not to LRP4. Passive transfer of MuSK-IgG to mice reduced the size and density of ColQ to ∼10% of controls and had a lesser effect on the size and density of AChR and MuSK. Conclusions: As lack of ColQ compromises agrin-mediated AChR clustering in Colq−/− mice, a similar mechanism may lead to AChR deficiency in MuSK-MG patients. Our experiments also predict partial AChE deficiency in MuSK-MG patients, but AChE is not reduced in biopsied NMJs. In humans, binding of ColQ to MuSK may be dispensable for clustering ColQ, but is required for facilitating AChR clustering. Further studies will be required to elucidate the basis of this paradox.


Biochemical and Biophysical Research Communications | 2009

Molecular hydrogen suppresses FcεRI-mediated signal transduction and prevents degranulation of mast cells

Tomohiro Itoh; Yasunori Fujita; Mikako Ito; Akio Masuda; Kinji Ohno; Masatoshi Ichihara; Toshio Kojima; Yoshinori Nozawa; Masafumi Ito

Molecular hydrogen ameliorates oxidative stress-associated diseases in animal models. We found that oral intake of hydrogen-rich water abolishes an immediate-type allergic reaction in mice. Using rat RBL-2H3 mast cells, we demonstrated that hydrogen attenuates phosphorylation of the FcepsilonRI-associated Lyn and its downstream signal transduction, which subsequently inhibits the NADPH oxidase activity and reduces the generation of hydrogen peroxide. We also found that inhibition of NADPH oxidase attenuates phosphorylation of Lyn in mast cells, indicating the presence of a feed-forward loop that potentiates the allergic responses. Hydrogen accordingly inhibits all tested signaling molecule(s) in the loop. Hydrogen effects have been solely ascribed to exclusive removal of hydroxyl radical. In the immediate-type allergic reaction, hydrogen exerts its beneficial effect not by its radical scavenging activity but by modulating a specific signaling pathway. Effects of hydrogen in other diseases are possibly mediated by modulation of yet unidentified signaling pathways. Our studies also suggest that hydrogen is a gaseous signaling molecule like nitric oxide.


The EMBO Journal | 2003

JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation.

Tetsuya Matsuguchi; Akio Masuda; Kenji Sugimoto; Yoshiyuki Nagai; Yasunobu Yoshikai

Lipopolysaccharide (LPS) is recognized by Toll‐like receptor (TLR) 4 and activates NF‐κB and a set of MAP kinases. Here we have investigated proteins associated with the cytoplasmic domain of mouse TLR4 by yeast two‐hybrid screening and identified JNK‐interacting protein 3 (JIP3), a scaffold protein for JNK, as a TLR4‐associated protein. In mammalian cells, JIP3, through its N‐terminal region, constitutively associates with TLR4. The association is specific to JIP3, as the two other JIPs, JIP1 and JIP2, failed to bind TLR4. In HEK 293 cells exogenously expressing TLR4, MD2 and CD14, co‐expression of JIP3 significantly increased the complex formation of TLR4–JNK and LPS‐mediated JNK activation. In contrast, expression of C‐terminally truncated forms of JIP3 impaired LPS‐induced JNK activation in a mouse macrophage cell line, RAW264.7. Moreover, RNA interference of JIP3 inhibited LPS‐mediated JNK activation. In RAW264.7 cells, JIP3 associates MEKK‐1, but not with TAK‐1. Finally, JIP3 also associates with TLR2 and TLR9, but not with TLR1 or TLR6. Altogether, our data indicate the involvement of JIP3 in JNK activation in downstream signals of some TLRs.

Collaboration


Dive into the Akio Masuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge